Multi-objective Bayesian optimization with human-in-the-loop for flexible neuromorphic electronics fabrication

Abstract

Neuromorphic computing hardware enables edge computing and can be implemented in flexible electronics for novel applications. Metal oxide materials are promising candidates for fabricating flexible neuromorphic electronics, but suffer from processing constraints due to the incompatibilities between oxides and polymer substrates. In this work, we use photonic curing to fabricate flexible metal–insulator–metal capacitors with solution-processible aluminum oxide dielectric tailored for neuromorphic applications. Because photonic curing outcomes depend on many input parameters, identifying an optimal processing condition through a traditional grid-search approach is unfeasible. Here, we apply multi-objective Bayesian optimization (MOBO) to determine photonic curing conditions that optimize the trade-off between desired electrical properties of large capacitance–frequency dispersion and low leakage current. Furthermore, we develop a human-in-the-loop (HITL) framework for incorporating failed experiments into the MOBO machine learning workflow, demonstrating that this framework accelerates optimization by reducing the number of experimental rounds required. Once optimization is concluded, we analyze different Pareto-optimal conditions to tune the dielectric's properties and provide insight into the importance of different inputs through Shapley Additive exPlanations analysis. The demonstrated framework of combining MOBO with HITL feedback can be adapted to a wide range of multi-objective experimental problems that have interconnected inputs and high experimental failure rates to generate usable results for machine learning models.

Graphical abstract: Multi-objective Bayesian optimization with human-in-the-loop for flexible neuromorphic electronics fabrication

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Communication
Submitted
09 Oct 2025
Accepted
06 Jan 2026
First published
07 Jan 2026

J. Mater. Chem. C, 2026, Advance Article

Multi-objective Bayesian optimization with human-in-the-loop for flexible neuromorphic electronics fabrication

B. Dunn, J. Meza-Arroyo, A. Tiihonen, M. Lee and J. W. P. Hsu, J. Mater. Chem. C, 2026, Advance Article , DOI: 10.1039/D5TC03660G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements