Development of self-assembled peptide hydrogels containing matrix-metalloproteinase degradable motifs for 3D lung cancer models
Abstract
Hydrogel-forming peptides, including matrix metalloproteinase (MMP)-degradable motifs, have been employed to investigate cell-extracellular matrix interactions in vitro. However, their potential in 3D cancer models has been explored only in a few studies. In this study, we used modified MMP-2 degradable motifs (VSLRA or ASLRA) in the design of EDP1 (RVSLRADARVSLRADA) and EDP2 (RASLRADARASLRADA) peptide hydrogelators. The peptides self-assembled into nanofibrillar hydrogels with storage moduli between ∼300 and ∼400 Pa. MMP-2 degradation properties of the peptides were confirmed, and a slightly higher MMP-2 responsiveness of the EDP1 hydrogel was observed. The hydrogels were used in the encapsulation of A549 lung adenocarcinoma cancer cells and MRC-5 human lung fibroblast cells. The designed hydrogels supported the proliferation of these cells with high viability and induced cluster formation of encapsulated A549 cells similar to that observed with the RADA hydrogel. However, the hydrogel network structure affected the morphology of the migrated cells in the absence of curcumin. The addition of curcumin decreased the migration and invasion of A549 cells, resulting in a round cell morphology independent of the hydrogel matrices. Anticancer drug tests indicated that cell viability after drug treatment was higher in the 3D hydrogels than in 2D cultures. It was also confirmed that the combinational therapy of doxorubicin and curcumin decreased the cell proliferation and colonization to a greater extent compared to doxorubicin monotherapy. Thus, the hydrogels developed in this study can be used for 3D cancer models or other tissue engineering applications as an alternative to the RADA hydrogel by exploiting the MMP-2 degradation properties.

Please wait while we load your content...