Development of self-assembled peptide hydrogels containing matrix-metalloproteinase degradable motifs for 3D lung cancer models

Abstract

Hydrogel-forming peptides, including matrix metalloproteinase (MMP)-degradable motifs, have been employed to investigate cell-extracellular matrix interactions in vitro. However, their potential in 3D cancer models has been explored only in a few studies. In this study, we used modified MMP-2 degradable motifs (VSLRA or ASLRA) in the design of EDP1 (RVSLRADARVSLRADA) and EDP2 (RASLRADARASLRADA) peptide hydrogelators. The peptides self-assembled into nanofibrillar hydrogels with storage moduli between ∼300 and ∼400 Pa. MMP-2 degradation properties of the peptides were confirmed, and a slightly higher MMP-2 responsiveness of the EDP1 hydrogel was observed. The hydrogels were used in the encapsulation of A549 lung adenocarcinoma cancer cells and MRC-5 human lung fibroblast cells. The designed hydrogels supported the proliferation of these cells with high viability and induced cluster formation of encapsulated A549 cells similar to that observed with the RADA hydrogel. However, the hydrogel network structure affected the morphology of the migrated cells in the absence of curcumin. The addition of curcumin decreased the migration and invasion of A549 cells, resulting in a round cell morphology independent of the hydrogel matrices. Anticancer drug tests indicated that cell viability after drug treatment was higher in the 3D hydrogels than in 2D cultures. It was also confirmed that the combinational therapy of doxorubicin and curcumin decreased the cell proliferation and colonization to a greater extent compared to doxorubicin monotherapy. Thus, the hydrogels developed in this study can be used for 3D cancer models or other tissue engineering applications as an alternative to the RADA hydrogel by exploiting the MMP-2 degradation properties.

Graphical abstract: Development of self-assembled peptide hydrogels containing matrix-metalloproteinase degradable motifs for 3D lung cancer models

Supplementary files

Article information

Article type
Paper
Submitted
02 Sep 2025
Accepted
08 Dec 2025
First published
12 Jan 2026

Soft Matter, 2026, Advance Article

Development of self-assembled peptide hydrogels containing matrix-metalloproteinase degradable motifs for 3D lung cancer models

B. S. Tarım, S. Tamburacı and A. Top, Soft Matter, 2026, Advance Article , DOI: 10.1039/D5SM00890E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements