Pt–Ag and Pt–Ag–Sn bimetallic and trimetallic catalysts supported on γ-Al2O3 for direct propane dehydrogenation

Abstract

The synthesis, characterization and catalytic performance assessment of Pt–Ag and Pt–Ag–Sn bimetallic and trimetallic catalysts supported on KOH-treated γ-Al2O3 for the direct propane dehydrogenation reaction have been carried out. The bimetallic catalysts contained 0.3 wt% Pt and 0.5 wt% K, with x = 0.1, 0.3, 0.5, 0.7, 0.9, and 1.1, corresponding to the amount of Ag (0.3Pt–xAg/0.5K–Al2O3). The trimetallic catalysts contained 0.3 wt% Pt, 0.7 wt% Sn and 0.5 wt% K, with the same x values for Ag (0.3Pt–xAg–0.7Sn/0.5K–Al2O3). The catalytic tests were run on real samples (1.8 mm spheres). The 0.3Pt–0.9Ag–0.7Sn/0.5K–Al2O3 composition resulted in the highest yield of propylene (31.4%), highest propylene selectivity (79.3%) and minimum deactivation after 200 min on stream at a gas hourly space velocity of 10 000 cm3 g per catalyst per h at a reaction temperature of 580 °C, comparable to the performance of a DeH-16 commercial catalyst under the same operating conditions. Based on X-ray diffraction, H2-temperature-programmed reduction, X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, electron microscopy, Raman spectroscopy and temperature-programmed oxidation analysis, the performance of the optimum sample was attributed to the synergetic electronic and geometrical effects induced by the formation of Pt–Ag and Pt–Sn alloys and partial coverage of support acidic sites by Ag and Sn clusters.

Graphical abstract: Pt–Ag and Pt–Ag–Sn bimetallic and trimetallic catalysts supported on γ-Al2O3 for direct propane dehydrogenation

Article information

Article type
Paper
Submitted
08 Aug 2025
Accepted
15 Oct 2025
First published
28 Oct 2025

React. Chem. Eng., 2026, Advance Article

Pt–Ag and Pt–Ag–Sn bimetallic and trimetallic catalysts supported on γ-Al2O3 for direct propane dehydrogenation

G. Kasaeian, C. Falamaki, M. Mozaffarian and R. Daroughegi, React. Chem. Eng., 2026, Advance Article , DOI: 10.1039/D5RE00345H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements