Precision at the nanoscale: an ‘ionic’ view of composition, structure and properties

Anagha Jose a, B. S. Sooraj a and Thalappil Pradeep *ab
aDST Unit of Nanoscience (DST UNS) & Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras (IITM), Chennai 600036, India. E-mail: pradeep@iitm.ac.in
bInternational Centre for Clean Water, 2nd Floor, B-Block, IIT Madras Research Park, Kanagam Road, Taramani, Chennai 600113, India

Received 11th September 2025 , Accepted 26th October 2025

First published on 27th October 2025


Abstract

The study of matter at the nanoscale has traditionally relied on electron microscopy and optical spectroscopy to relate particle size with emerging properties. Mass spectrometry (MS), although a century-old analytical technique, has emerged in recent decades as a central tool for investigating atomically precise clusters (APCs). The introduction of soft ionisation methods, such as electrospray ionisation (ESI) and matrix-assisted laser desorption/ionisation (MALDI), has enabled the detailed analysis of cluster composition, fragmentation pathways, and structural features of APCs. The integration of ion mobility spectrometry with MS has further allowed direct correlations among their molecular formula, structure, and stability. At the same time, new developments such as charge-detection MS, ultraviolet photodissociation, and mass photometry have expanded the analytical range to larger and more complex systems. Beyond fundamental characterisation, MS is increasingly being applied to probe intrinsic properties such as ionisation potentials and support material applications through cluster deposition and related approaches. This review highlights the expanding role of MS in APC research and the impact of mass spectrometry-based techniques in materials science.


image file: d5nr03845f-p1.tif

Anagha Jose

Anagha Jose received her BSc from the University of Calicut and M.Sc. from Cochin University of Science and Technology (CUSAT). She is currently a PhD scholar at the Indian Institute of Technology Madras (IITM) under the guidance of Prof. Thalappil Pradeep. She has been awarded the Prime Minister's Research Fellowship (PMRF). Her research interests include mass spectrometry of nanoclusters and nanoparticles, as well as the applications of atomically precise metal clusters.

image file: d5nr03845f-p2.tif

B. S. Sooraj

B. S. Sooraj received a BS-MS Dual Degree from the Indian Institute of Science Education and Research Bhopal (IISERB) in 2019. He is currently a PhD scholar at the Indian Institute of Technology Madras (IITM) under the guidance of Prof. Thalappil Pradeep. He is a recipient of the prestigious Shyama Prasad Mukherjee (SPM) Fellowship. His research interests include atomically precise metal clusters, mass spectrometry of megadalton clusters and nanoparticles, and CryoEM-based single-particle reconstruction of nanoparticles.

image file: d5nr03845f-p3.tif

Thalappil Pradeep

Thalappil Pradeep is an Institute Professor and Deepak Parekh Institute Chair Professor at the Indian Institute of Technology Madras (IITM), Chennai, India. His research interests are in molecular and nanoscale materials. He has authored 600 scientific papers, 10 books, 100+ Indian and 29 US/PCT patents, co-founded 7 start-ups and founded the International Centre for Clean Water (https://iccw.world). He is involved in the development of affordable technologies for drinking water purification. His pesticide removal technology has reached >10 million people. His arsenic removal technology, approved for national implementation, is delivering arsenic-free water to >1.4 million people every day. He is a recipient of the Shanti Swaroop Bhatnagar Prize, The World Academy of Sciences (TWAS) prize, Padma Shri, Nikkei Asia Prize, Prince Sultan Bin Abdulaziz International Prize for Water, VinFuture Prize and ENI award. He is a Fellow of all the science and engineering academies of India, TWAS, American Association for the Advancement of Science, African Academy of Sciences, US National Academy of Engineering and Academia Europaea. He has received the Lifetime Achievement Research Award of IITM and Distinguished Alumnus Award of Indian Institute of Science. As part of philanthropy, he supports a school in his village where 500 students are enrolled.


1. Introduction

As John Fenn stated in his Nobel lecture, “Electrospray: Wings for Molecular Elephants”,1 the technique has evolved, ‘from flames to flying elephants.’ What once seemed an improbable task, namely, transferring large biomolecules such as proteins and polymers into their gaseous phase, became possible through electrospray ionisation, a development that transformed modern mass spectrometry. This development has great consequence to cluster science as well.

The origin of mass spectrometry dates to the early 20th century, when Sir J. J. Thomson constructed the first mass spectrograph,2,3 then referred to as a “parabola spectrograph”, to measure the mass-to-charge (m/z) ratio of gaseous ions. His pioneering work not only led to the development of MS as an analytical technique but also provided the first evidence of isotopes. Francis W. Aston further expanded this observation and discovered isotopes in elements, for which he was awarded the Nobel Prize in Chemistry in 1922.4 In the early decades, MS was widely used in organic chemistry, primarily for the analysis of small molecules. Ionisation methods such as electron impact (EI) and electric discharge were well-suited for volatile and thermally stable compounds. As this field evolved, the utility of MS expanded to include more complex analytes such as sugars, alkaloids, and peptides.5 The development of hyphenated techniques, especially gas chromatography-mass spectrometry (GC–MS), significantly enhanced the ability to resolve and identify components in complex mixtures, establishing MS as an inevitable tool in analytical chemistry.6,7

However, the expansion of MS into the realm of biomolecular analysis posed new challenges due to the fragility and high mass of proteins and nucleic acids. To address this, high-resolution double-focusing mass spectrometers were developed, as demonstrated by Todd, McGilvery, and Baldwin.8 These instruments enabled more accurate m/z measurements and facilitated early tandem MS (also designated as MS/MS) experiments for structural elucidation. However, the lack of efficient and non-destructive ionisation methods limited the analysis of large biomolecules.

A major paradigm shift occurred in the late 1980s with the introduction of soft ionisation techniques, notably electrospray ionisation (ESI)9 and matrix-assisted laser desorption ionisation (MALDI).10,11 These techniques enabled the ionisation of large, fragile molecules under mild conditions, preserving their molecular integrity and allowing their introduction into the gas phase for mass analysis.12 These breakthroughs had a profound impact, particularly in proteomics and macromolecular research, and their significance was recognised with the 2002 Nobel Prize in Chemistry awarded to John Fenn for electrospray ionisation (ESI) and Koichi Tanaka for soft laser desorption.13 These historical milestones reflect the continuous innovation in mass spectrometry that has expanded its analytical capabilities from elemental and isotopic analysis to the structural and compositional characterisation of large and complex molecular assemblies.

Atomically precise clusters (APCs), composed of tens to thousands of metal atoms stabilised by ligands and with core sizes below 3 nm, bridge the gap between atoms and bulk. Their closely spaced electronic orbitals give rise to multiple electronic transitions, photoluminescence, chirality, conductivity, and magnetism, distinguishing them from bulk metals.14–17 Over 700 atomically precise clusters with nuclearities ranging from 2 to 2000 atoms have been reported,18 with more than 350 being structurally characterised by crystallography,19 including metals such as Au, Ag, Pt, and Cu, as well as their alloys. Conventional characterisation methods, such as transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS), often lack the resolution to fully capture the precise size and composition of these clusters.20 However, MS offers capabilities that surpass conventional techniques, which make it an indispensable analytical tool in the analysis of APCs. Although electron microscopy and optical methods primarily provide information on morphology and size-dependent properties, MS enables the direct and accurate determination of cluster composition, isotopic distribution, charge states, and ligand architecture at the molecular level. It enables in-depth analysis of both bare and ligand-protected NCs, helping to understand their reactivity, transformation pathways, and gas-phase structures. MS/MS involves the analysis of mass-selected ions, which provides further insights into their structural features and fragmentation behaviour. Additionally, ion mobility mass spectrometry (IM-MS) enables the exploration of structural isomerism and conformational changes in the gas phase. Emerging techniques, including charge detection mass spectrometry (CDMS) and mass photometry (MP), are expanding the capabilities of MS by enabling single-particle sensitivity and accurate mass measurements for large, heterogeneous, or weakly ionising NCs.21

With the advancement of mass spectrometric (MS) instrumentation, recent developments have significantly expanded the analytical window in terms of accessible mass range, resolution and detection limit. Techniques such as Fourier transform ion cyclotron resonance (FT-ICR)22,23 and Orbitrap mass spectrometry24,25 now achieve resolutions above 1[thin space (1/6-em)]000[thin space (1/6-em)]000 and 500[thin space (1/6-em)]000, respectively, with sub-femtomole sensitivity, enabling the accurate characterisation of molecules from small ions to multi-megadalton assemblies. Time-of-flight (TOF) and quadrupole-TOF (Q-TOF) analysers provide rapid acquisition and high-throughput analysis with resolutions approaching 100[thin space (1/6-em)]000, making them valuable for complex biological and chemical systems.26,27 CDMS and Orbitrap-CDMS extend measurements to the megadalton and gigadalton scales by directly determining the charge and mass of single ions with near unit-charge accuracy.28,29 Mass photometry complements these approaches by offering label-free, single-particle mass analysis in solutions across the 30 kDa–10 MDa range.30 Collectively, these developments provide powerful and versatile tools for high-resolution and high-sensitivity analysis in chemistry, biology, and materials science.

In addition to structural and compositional analysis, MS has enabled the real-time monitoring of cluster growth, ligand exchange, redox behaviour, and intermediate species during synthesis. The resemblance of NCs to biomolecules in terms of mass range and surface ligand environment makes ESI-MS particularly suited to their analysis, such as protein characterisation. Furthermore, the ability of MS to resolve complex mixtures and detect species with varying charge states expands its utility to very large NCs and even small nanoparticles with emerging surface plasmon resonance (e.g., Au279(TBBT)84 and Ag146Br2(TIBT)80).31,32 Complementary to MS, mass photometry enables the label-free, solution-phase quantification of the aggregation states and supramolecular assemblies of atomically precise clusters at the single-particle level.33

Collectively, advancements in MS instrumentation and methodologies have firmly established both ESI and MALDI as indispensable platforms for the molecular-level characterisation of metal NCs.34,35 They provide accurate data that is in strong agreement with the crystallographically and theoretically predicted structures, and thereby play a crucial role in the rational design of nanocluster-based materials. The field of mass spectrometry of APCs has expanded significantly over the years, with the research output now exceeding 700 publications (Fig. 1), indicating the rapidly growing interest and suggesting a surge in research efforts in this direction soon.


image file: d5nr03845f-f1.tif
Fig. 1 Number of papers published each year on nanoclusters and mass spectrometry (collected from Web of Science using the keywords “nanoclusters”, “metal clusters”, “mass spectrometry” and “mass”). The data were collected up to July 31, 2025.

Mass spectrometry (MS), along with its advanced and hyphenated variants, has become a cornerstone in the characterisation of nanoclusters, providing unparalleled insights into their composition, structure, and dynamics.35–38 In this review, we discuss the recent advances in MS-based approaches for studying atomically precise nanoclusters (APCs), with a focus on four key aspects including composition,39 structure,40 properties,41 and applications42,43 (Fig. 2).


image file: d5nr03845f-f2.tif
Fig. 2 Schematic depicting the role of mass spectrometry in atomically precise clusters (APCs), enabling a detailed understanding of their composition, structure, properties, and applications. Images under composition are adapted with permission from ref. 39. Copyright 2018, the American Chemical Society. Images under structure are adapted from ref. 40. Copyright 2017, the American Chemical Society. Images under properties are adapted from ref. 41. Copyright 2022, the American Chemical Society. Images under applications are adapted from ref. 42 and 43. Copyright 2011, the American Chemical Society and Copyright 2018, John Wiley and Sons, respectively.

2. Mass spectrometry: the gateway to nanoparticle characterisation

2.1. Composition of clusters

Since the 1980s, advancements in ionisation sources such as supersonic expansion and laser desorption ionisation (LDI) have established MS as a critical technique for characterising gas-phase metal clusters,44,45 fullerenes,46 and semiconductor clusters.47,48 In 1994, Brust et al. made a breakthrough in the synthesis of thiol-protected gold nanoparticles (<3 nm),49 which enabled the preparation of monodisperse, atomically precise nanoclusters, leading to extensive research in this area.

MS has rapidly emerged as an indispensable tool for determining the composition of noble metal nanoclusters, particularly gold (Au), silver (Ag), and platinum (Pt) nanoclusters. The early work by Murray and Whetten employed LDI-MS to analyse thiolate-protected gold nanoclusters, which initiated the use of MS in cluster science.50–52 However, LDI, being a relatively harsh ionisation method, often caused fragmentation, limiting its utility for accurate molecular composition analysis. This challenge led to the adoption of softer ionisation techniques such as matrix-assisted laser desorption ionisation (MALDI) and electrospray ionisation (ESI), which allowed the detection of intact ligand-protected clusters. ESI-MS, in particular, has proven highly effective due to its gentle ionisation process, enabling the high-resolution detection of intact molecular ions, accurate charge-state determination, and precise elemental composition, which is crucial for structural elucidation. A notable example includes the identification of a 10.4 kDa glutathione-protected gold cluster, initially reported as Au28(SG)16 by Schaaff et al. in 1998 using MALDI and ESI-MS,53 and later reassigned as Au25(SG)18 by Negishi et al. in 2005.54 These advances have significantly deepened the molecular-level understanding of the structure and composition of gold nanoclusters.55

At present, ESI-MS and MALDI-MS have become predominant analytical tools to precisely characterise the composition of ligand-protected metal nanoclusters. Numerous atomically precise gold NCs, including [Au24(SAdm)16] (Fig. 3a),56 [Au25(PET)18],57,58 and [Au32(SC2H4Ph)24] (Fig. 3b),59 have been successfully characterised by ESI-MS, where the experimentally observed charge states and molecular weights closely match the crystallographic data, validating the cluster formulae with atomic-level accuracy. Although silver nanoclusters present analytical challenges due to their dual isotopes (107Ag and 109Ag) and lower stability, these issues have been effectively addressed by ESI-MS. The broader isotopic envelopes observed (e.g., Ag25(DMBT)18)60 allow clear differentiation from their gold counterparts. ESI-MS has precisely identified nanoclusters such as [Ag141X12(S-Adm)40]61 and Ag67(SPhMe2)32(PPh3)8 (Fig. 3c),62 confirming both their 3+ charge state and molecular formula, in excellent agreement with their crystal structures. To improve the ionisation efficiency, especially for clusters with low intrinsic ionizability, ionisation enhancers such as caesium acetate (CsOAc)63,64 are utilised, facilitating the formation of intact molecular ions. MALDI-MS, enhanced with optimised matrices such as DCTB (trans-2-[3-(4-tert-butylphenyl)-2-methyl-2-propenylidene] malononitrile), is widely used to analyse larger nanoclusters (e.g., Au133(SPh-tBu)52 and Au329(SCH2CH2Ph)84),65–67 often yielding intact molecular ion peaks with minimal fragmentation. MS has been extended beyond noble metals to non-noble metal clusters, heterometallic nanoclusters, and other ligand types. These clusters include metals such as Fe, Co, Ni, Cu, and Ir, as well as ligands such as hydrides, carboranes, carbenes, phosphines, and alkynyls. For example, [Ag18H16(TPP)10], [Ag25H22(DPPE)8],68 Ag40(C2B10H10S2)12(PPh3)8,69 Ag61(dpa)27(SbF6)4,70 Ag74(C[triple bond, length as m-dash]CPh)44,71 [Au13(NHC)5Cl2]Cl3,72 [Au20(dppp3)4]Cl4,73 Au22(C[triple bond, length as m-dash]CPh)18,74 Au110(C[triple bond, length as m-dash]CC3H6Ph)48,75 Cu18(PET)16(PPh3)4Cl,76 Cu33H18(Medpf)12,77 Cu75(S-Adm)32,78 Pd21(SCH2CH2Ph)18,79 Pt8(C2H2O2S)8,80 [Fe55H46(PtBu3)12]81 and [Ir9(PET)6].82


image file: d5nr03845f-f3.tif
Fig. 3 ESI-MS of (a) Au24(SAdm)16, (b) Au32(SC2H4Ph)24, (c) Ag67(SPhMe2)32(PPh3)2, (d) Ag1Ag28(SR)18(PPh3)4, (e) Au1Ag28(SR)18(PPh3)4, (f) Pt1Ag28(SR)18(PPh3)4, and (g) Pd1Ag28(SR)18(PPh3)4. Simulated and experimental isotopic distributions are shown in the inset. Reproduced with permission from (a) ref. 56, (b) ref. 59, (c) ref. 62, (d) ref. 85, (e) ref. 85, (f) ref. 85 and (g) ref. 85. Copyright 2014, the American Chemical Society. Copyright 2021, John Wiley and Sons. Copyright 2016, the American Chemical Society. Copyright 2019, National Academy of Sciences.

ESI-MS confirmed the molecular composition and the fact that Au44(2,4-DMBT)26 was charge-neutral prior to ionisation by identifying the [Au44(2,4-DMBT)26 + 2Cs]2+ ion at m/z 6250.3. The observed 2+ charge state, arising from the addition of Cs+, supported the neutral nature of the cluster, in agreement with X-ray crystallography and XPS data.83 In bimetallic systems, such as the Au27Cd1(SAdm)14(DPPF)Cl nanocluster, both ESI-MS and MALDI-MS played complementary roles, where ESI-MS determined the precise molecular formula, while MALDI-MS helped identify surface ligands, supporting the structural data obtained from single-crystal X-ray diffraction.84 Kang et al. constructed a comprehensive library of 21 atomically precise M29 nanoclusters, ranging from monometallic to tetrametallic compositions, using a novel M29(S-Adm)18(PPh3)4 template. ESI-MS was pivotal in confirming the exact compositions and uniformity of these clusters, revealing single, intense peaks for each species (Fig. 3d–g). The charge states were identified as 3+ for Ag29 and Au1Ag28, and 2+ for Pt1Ag28 and Pd1Ag28, which helped to establish their electronic configurations.85 Zhu and coworkers utilised ESI-MS to confirm the atomic precision in the site-specific doping of Au25(SR)18 clusters, resolving single-atom substitutions and tracking the doping reversibility.86 Similarly, Bootharaju et al. employed ESI-MS to verify single-atom gold doping in [Ag24Au(SR)18] clusters.87 Soldan et al. quantified the gold doping levels in Ag29(BDT)12(TPP)4, detecting up to five Au dopants (with minor populations of six and seven) through characteristic m/z shifts of 30 per substitution.88

Overall, MS, particularly ESI-MS, is a critical technique for confirming the composition, charge, stoichiometry, and atomic-level doping of metal nanoclusters. It offers an unparalleled molecular-level understanding that complements crystallographic and spectroscopic methods.

2.2. Mass spectrometric insights into ligand-induced transformation

MALDI-MS and ESI-MS have been extensively used in elucidating the mechanistic details of ligand exchange-induced structural transformation (LEIST) in atomically precise nanoclusters by providing molecular-level insights into both the intermediate and final species.89

Amala Dass and coworkers monitored the time-dependent core transformation in Au144(SCH2CH2Ph)60 using MALDI-MS. In the initial 2 h, they identified a new peak for Au133(SPh-tBu)52, and further they detected subsequent species such as Au102(SPh-tBu)44 and Au279(SPh-tBu)84 (Fig. 4a). However, due to its greater fragmentation, MALDI-MS failed to detect key intermediates such as Au191(SPh-tBu)66. This limitation was overcome by ESI-MS, which through softer ionisation, successfully identified Au191(SPh-tBu)66via its +2 and +3 charge states and Cs+ adducts (Fig. 4b). ESI-MS further confirmed the disappearance of Au133 at 14 h, indicating its full conversion, and revealed the presence of intermediate-sized clusters (Au98–104) that were not seen clearly by MALDI-MS. ESI-MS confirmed the purity of Au144(PET)60 and detected trace amounts of larger polydisperse species at later stages, suggesting cluster growth beyond Au279.90 Similarly, ESI-MS and optical spectroscopy were used to monitor the ligand-induced transformation of Au38(PET)24 to Au36(TBBT)24 (Fig. 4c). The reaction proceeds through four stages, i.e. ligand exchange, structural distortion, disproportionation to Au36 and Au40, and size focusing that yields Au36(TBBT)24 in ∼90% yield.91 Liu et al. successfully developed a synthetic protocol combining ligand exchange and size focusing. MALDI-MS revealed broad initial polydispersity centred around m/z ∼ 25[thin space (1/6-em)]000, while the final product was confirmed as a single, well-defined Au99(SPh)42 nanocluster at m/z ∼ 24[thin space (1/6-em)]000.92 Nimmala et al. describe the ligand-induced transformation of Au144(SCH2CH2Ph)60 into Au133(SPh-tBu)52 upon treatment with excess tert-butylbenzenethiol. ESI-MS precisely characterised the molecular compositions of both the starting and product clusters, capturing mixed-ligand intermediates such as Au144(SCH2CH2Ph)60−x(SPh-tBu)x. The core-size conversion begins after ∼22 ligand substitutions, with Au144(SCH2CH2Ph)38(SPh-tBu)22 showing enhanced stability. The detailed time-dependent mass spectral data (Fig. 4d) further revealed a stepwise evolution through intermediate-sized clusters (e.g., Au137–Au139) with varying ligand compositions, providing mechanistic insights into the ligand-exchange-induced structural rearrangements.93


image file: d5nr03845f-f4.tif
Fig. 4 (a) Schematic of the transformation of Au144(SCH2CH2Ph)60, and MALDI-MS of the starting Au144(SCH2CH2Ph)60 and its transformation to Au133(SPh-tBu)52, Au191(SPh-tBu)66, and Au279(SPh-tBu)84 upon reacting with 4-tert-butylbenzenethiol ligand at ∼140 °C for 14 h. (b) ESI-MS of the starting Au144(SCH2CH2Ph)60 at 0 h and its transformation to Au133(SPh-tBu)52, Au191(SPh-tBu)66, and Au279(SPh-tBu)84 upon reacting with 4-tert-butylbenzenethiol ligand at ∼140 °C for 14 h. (c) Time-dependent ESI-MS of the transformation reaction of Au38 to Au36 and corresponding UV–vis spectra of different times in parallel with ESI-MS. (d) Core size conversion of Au144(SCH2CH2Ph)60 to Au133(SPh-tBu)52 by ESI-MS. Adapted from (a) ref. 90, (b) ref. 90, (c) ref. 91 and (d) ref. 93. Copyright 2021, the American Chemical Society. Copyright 2013, the American Chemical Society. Copyright 2015, the American Chemical Society.

Collectively, MALDI-MS and ESI-MS facilitated a comprehensive understanding of the ligand-induced core transformations of clusters and the identification of intermediate species and final products, thereby providing insights into the mechanisms.

2.3. Atomic-scale insights into high-nuclearity nanoclusters

In 2014, Kumara et al. reported the synthesis and precise characterization of ‘Faradaurate-500’ (Au500(SR)120), a highly stable and monodisperse plasmonic gold nanocrystal with a diameter of approximately 2.4 nm, using ESI-MS and MALDI (Fig. 5a). Through analysis of multiply charged ions and ligand exchange experiments, they determined its molecular mass (115 kDa) and ligand number (120), achieving atomic-level compositional control rarely attained at this size.94 Building on this, Dass and coworkers synthesised a larger gold thiolate cluster, ‘Faradaurate-940’(Au940(SR)160), the largest cluster characterised by ESI-MS to date. They combined ESI-MS and MALDI-MS to determine its molecular mass, which is 207.5 kDa, and confirmed the ligand count (160) by comparing nanoclusters synthesised with two different thiols, hexanethiol and phenylethanethiol. The gold atom number (∼940 ± 20) was back-calculated from the total mass, while MALDI-MS verified the sample purity (Fig. 5b).95 Kumara et al. reported the synthesis and characterisation of ∼300 kDa and ∼400 kDa Au-hexanethiolate nanoparticles with compositions of approximately Au1385(SR)240 and Au2000(SR)290, respectively. MALDI-MS enabled compositional assignment, revealing peaks at 288 kDa and 394 kDa.96 Vergara et al. characterised Au∼2000(SC6H13)∼290 nanoparticles using MALDI-MS, which detected molecular ions at ∼394 kDa (1+) and ∼200 kDa (2+), confirming a gold core of approximately 2000 atoms and ∼290 ligands (Fig. 5c). These studies showed the development in the synthesis and mass spectrometric characterisation of gold nanocrystals from ∼500 to ∼2000 atoms, demonstrating how ESI-MS and MALDI-MS serve as complementary, high-precision techniques for atomic-level compositional analysis and structural elucidation across progressively larger nanocrystal sizes.97 Mass spectrometry provided insights into the formation, composition, and stability of silver clusters protected by 4-(tert-butyl) benzyl mercaptan (BBSH). Positive-ion ESI-MS tracked the evolution of the cluster over time, initially showing broad peaks (∼10–15 kDa), which shifted to defined clusters at 43.5 kDa after 3 h, and finally to stable 51.8 kDa clusters by 24 h, with no signs of etching (Fig. 5d). LDI-MS revealed that the 51.8 kDa cluster lost ∼18 kDa upon laser-induced cleavage of C–S bonds, corresponding to the loss of approximately 120 BBS ligands, leading to an estimated formula of Ag280(BBS)120. Similarly, the 43.5 kDa intermediate was assigned as Ag223(BBS)108.98
image file: d5nr03845f-f5.tif
Fig. 5 (a) MALDI (red) and ESI (blue) mass spectra of Au∼500±10(SCH2CH2Ph)∼120±3. MALDI-MS shows 1+ and 2+ ions, while ESI MS yields 3−, 4−, 5−, and 6− ions. (b) MALDI (red) and ESI (blue) mass spectra of Au940±20(SR)160±4. (c) MALDI-MS and UV–visible spectrum (inset) of Au∼2000(SR)∼290. (d) Positive-ion ESI mass spectra and GPC chromatograms of Ag∼280(SBB)∼120. Adapted from (a) ref. 94, (b) ref. 95, (c) ref. 97 and (d) ref. 98. Copyright 2014, the American Chemical Society. Copyright 2014, the American Chemical Society. Copyright 2018, the American Chemical Society. Copyright 2011, The Royal Society of Chemistry.

2.4. Nanocluster chemistry unveiled: inter-cluster reactions

Inter-cluster reactions involve the exchange of metal atoms and/or ligands between two atomically precise clusters, leading to the formation of alloy clusters, mixed ligand clusters, cluster polymers and new clusters. These reactions occur spontaneously under ambient conditions, revealing that nanoclusters are dynamic, chemically active entities.99 These reactions were first demonstrated by Krishnadas et al. using ESI-MS to observe the real-time metal (Au–Ag) and ligand (PET–FTP) exchange between [Au25(SR)18] and [Ag44(SR)30] clusters, revealing the formation of alloys with mass shifts of 89 and 99 Da.100 Building on this, Pradeep and coworkers showed that mixing of [Ag25(SR)18] and [Au25(SR)18] leads to the formation of bimetallic nanoclusters, with ESI-MS capturing a short-lived dimer intermediate, [Ag25Au25(SR)536]2−, which enabled atomic exchange (Fig. 6a).101 Subsequently, Neumaier et al. developed a kinetic model based on the reaction between [Ag25(DMBT)18] and [Au25(PET)18], showing that inter-cluster exchange occurs through three steps, as follows: (i) formation of a dimer, (ii) internal exchange of metal atoms, and (iii) breakdown into alloyed monomers.102 Recently, Sooraj et al. showed that solid-state grinding of [Au25(PET)18] with [Ag25(DMBT)18] led to the rapid formation of polymer species, including dimers, trimers, and higher oligomers (Fig. 6b).
image file: d5nr03845f-f6.tif
Fig. 6 (a) ESI-MS of the mixture of Ag25(DMBT)18(I) and Au25(PET)18(II), showing a feature due to the dianionic adduct, (Ag25Au25(DMBT)18(PET)18)2− formed between I and II. (b) ESI-MS of Ag25(SR)18 and Au25(SR)18, and the time-dependent MS of the of Ag25(SR)18[thin space (1/6-em)]:[thin space (1/6-em)]Au25(SR)18 (ratio 1[thin space (1/6-em)]:[thin space (1/6-em)]1) produced monomers, dimers, and tetramers of the exchanged species. (c) Time-dependent ESI-MS results of the conversion from 109Ag44(SR)30 to 107Ag44(SR)30. (d) Time-dependent ESI-MS results of the conversion from 107Ag44(SR)30 to 109Ag44(SR)30. Reproduced with permission from (a) ref. 101, (b) ref. 103, (c) ref. 105 and (d) ref. 105. Copyright 2016, Springer Nature Group. Copyright 2024 and 2021, the American Chemical Society.

The rate of reaction appeared to be faster in the solid state compared to the solution phase. Control experiments showed that metal exchange between clusters is the driving factor for polymerisation. The polymer species were stabilised by weak interactions such as van der Waals forces, aurophilicity, C–H⋯π and π–π stacking.103 Isotopic labelling studies using [107Ag25(DMBT)18] and [109Ag25(DMBT)18] showed that all 25 silver atoms could be exchanged within a minute.104 Tang et al. showed that more rigid clusters such as Ag29(BDT)12(TPP)4 exchanged atoms much more slowly, proving that flexibility plays a key role in reactivity. Their study showed that all the silver atoms in Ag44(SR)30 can dynamically exchange with Ag(I)-thiolate via an entropy-driven, isotopic metal exchange process, occurring first in the shell, and then in the kernel. Time-dependent ESI-MS showed complete, reversible conversion between 107Ag and 109Ag clusters over time (Fig. 6c and d), respectively.105 In a related study, Suyama et al. found that spontaneous electron transfer (not atom exchange) occurred between two PtAu24 clusters, protected with different alkanethiol ligands. The longer alkyl chains stabilised the dimer intermediates, which facilitated electron transfer between the clusters. These dimers were directly observed by ESI-MS, and their stability was found to increase with an increase in alkyl chain length.106

In a recent study by Acharya et al., they reported that very stable dimers were formed between [Ag29(BDT)12]3− and [Mag24(DMBT)18] (M = Ag, Au, Pd, or Pt), which remained intact for up to 48 h in solution due to the strong Ag–S bonds and non-covalent interactions at the interface. Altogether, these studies prove that nanoclusters are not fixed structures but can dynamically transform through inter-cluster interactions. ESI-MS plays a central role in understanding the products and intermediates, monitoring the real-time kinetics, and elucidating the mechanism of inter-cluster reactions.107

3. Mass spectrometry and structure

Ion mobility spectrometry (IM-MS) and tandem mass spectrometry (MS/MS) techniques such as collision-induced dissociation (CID), surface-induced dissociation (SID), and ultraviolet photodissociation (UVPD) are powerful approaches for probing the structure and fragmentation of metal nanoclusters. CID and SID induce fragmentation through energetic collisions, while UVPD uses light to activate ions, each revealing distinct dissociation pathways. IMS adds an additional dimension by separating ions based on their shape and size, enabling detailed insight into nanocluster conformations and fragmentation dynamics in the gas phase.

3.1. Unravelling the dissociation pathways of APCs in the gas phase

Collision-induced dissociation is a widely used MS/MS technique that enables the detailed study of the structure and stability of gas-phase ions by inducing fragmentation through collisions with inert gases such as helium, nitrogen, and argon. By accelerating mass-selected ions and causing them to collide with neutral gas molecules, CID converts kinetic energy into internal energy, leading to controlled bond cleavage within the ion. Fields-Zinna et al. applied CID MS/MS to a thiolate-protected gold nanocluster, NaxAu25(SC2H4Ph)18−y(S(C2H4O)5CH3)y, revealing that fragmentation predominantly involves the loss of the Au2L3 semi-ring motifs that bridge the Au13 core. The major fragment ions detected include [Na2AuL2]+, [Na2Au2L3]+, [NaAu3L3]+, and [NaAu4L4]+, with no intermediates containing Au5–Au17, indicating that the Au13 core remained intact under the CID conditions.108 Dass and coworkers reported the first complete structural and fragmentation analysis of an Au25(SR)18 nanocluster using IM-MS and CID MS/MS. This study revealed that the major fragments of Au25(SR)18 were Au21(SR)14 and Au17(SR)10 formed due to the successive loss of neutral Au4(SR)4 fragments.109 Black et al. utilised in-source CID MS to analyse larger gold NCs such as Au144(SR)60 and Au130(SR)50, observing that triply charged (3+) ions undergo more efficient fragmentation (∼80%) due to coulombic repulsion and higher energy absorption. Their fragmentation patterns involve characteristic neutral loss of disulfide ligands (SR)2 and hydrocarbon units, with core-specific gold-containing fragments such as Au4(SR)4 for Au144 and Au3(SR)2 for Au130, reflecting the differences in cluster core dissociation.110 Chakraborty et al. demonstrated that [Ag29(S2R)12]3−, [Ag25(SR)18], and [Ag44(SR)30]4− exhibit distinct dissociation pathways and gas-phase stabilities, which are correlated with their geometric and electronic structures. [Ag29(S2R)12]3− undergoes stepwise cleavage into [Ag24(S2R)9]2− and [Ag5(S2R)3], while [Ag44(SR)30]4− fragments into [Ag(SR)2] and [Ag2(SR)3], retaining their closed-shell configurations. [Ag25(SR)18] differs from its gold analogue by losing neutral Ag3(SR)3 units. This study found that the gas-phase stability trends (Ag29 > Ag25 > Ag44) are correlated with the solution-phase behaviour.111 Yao et al. revealed the atomic-level mechanism of isoelectronic size conversion from [Au23(SR)16] to [Au25(SR)18] via a surface-motif-exchange (SME)-induced core transformation from cuboctahedral to icosahedral Au13. The isoelectronic size-conversion of Au23 nanoclusters proceeds according to the following definitive reaction: [Au23(SR)16] + 2[Au2(SR′)3] → [Au25(SR)12(SR′)6] + 2[Au(SR)2]. ESI-MS was central in tracking the real-time reaction kinetics, showing a simultaneous decrease in [Au23(SR)16] and increase in [Au25(SR)18] peak intensities, as shown in Fig. 7a. The MS/MS spectra of [Au23(SR)16] (Fig. 7b) undergoes sequential loss of [Au(SR)2], [Au2(SR)] and [Au25(SR)18] (Fig. 7c) and shows the dominant dissociation of [Au2(SR)], with an increase in the collision energy. The fragmentation pathways of [Au23(SR)16] and [Au25(SR)18] are shown in Fig. 7d and e, respectively. Based on the definitive equation and according to MS/MS analysis, they constructed an SME-induced symmetry-breaking core structure transformation mechanism for the isoelectronic size-conversion reaction.112 Xie and coworkers studied the molecular-level oxidative etching mechanism of water-soluble [Au25(SR)18] nanoclusters using time-dependent ESI-MS and MS/MS. They identified over 20 intermediate species and revealed a two-stage process, as follows: (i) rapid decomposition into smaller clusters and Au(I)-SR complexes; (ii) followed by isoelectronic recombination into larger clusters (e.g., [Au24SR20]0) or ligand-rich clusters. MS/MS revealed size-dependent fragmentation patterns and verified the evolution of the surface motifs from [Au4SR4] in [Au18SR14]0 to [Au6SR6] in [Au24SR20]0. MS/MS also revealed that larger clusters fragmented more extensively at the same collision energy, with the onset fragmentation energies generally decreasing with size, except for [Au24SR20]0.113 Surface-induced dissociation (SID) is a powerful ion activation technique, wherein mass-selected ions collide with functionalized surfaces (e.g., alkanethiol-protected gold), enabling precise probing of the fragmentation energetics and kinetics. Unlike CID, SID offers finer control over the collision energy, allowing quantitative determination of the threshold dissociation energies, activation entropies, and microcanonical rate constants. Johnson et al. used SID to demonstrate that the [Au8(TPP)6]2+ cluster exhibits greater stability toward dissociation compared to [Au7(TPP)6]2+, [Au8(TPP)7]2+, and [Au9(TPP)7]2+.114 Further, Baksi et al. studied Ag11(SG)7 and showed that SID induced greater fragmentation and charge stripping compared to CID.115 MS/MS investigations have proven indispensable for understanding the fragmentation pathways, core–ligand interactions, structural integrity, and dynamic transformations in APCs. These mass spectrometric studies complement crystallographic and spectroscopic techniques by providing molecular-level insights.
image file: d5nr03845f-f7.tif
Fig. 7 (a) ESI-MS of the isoelectronic size conversion from [Au23(SR)16] to [Au25(SR)18] in water. Structural relation between Au23 and Au25 nanoclusters. (b, c) Tandem mass spectra and (d, e) fragmentation pathways of [Au23(SR)16] and [Au25(SR)18]. Adapted from (a)–(e) ref. 112. Copyright 2018, Springer Nature Group.

3.2. UVPD

Ultraviolet photodissociation (UVPD) mass spectrometry uses high-energy UV photons, typically from a pulsed laser at 193 nm (also 213 or 266 nm are used), to excite ions to electronically excited states, inducing extensive and specific fragmentation. This technique provides deeper structural insights than conventional methods such as collision-induced dissociation (CID) or electron-based methods such as electron capture dissociation (ECD) and electron transfer dissociation (ETD).116 Its applications extend across proteomics, including peptide sequencing and PTM localisation, top-down protein analysis, native mass spectrometry of protein complexes, as well as lipidomics, nucleic acid characterisation, and glycomics. In APCs, CID and SID produce limited fragments, whereas UVPD generates extensive, detailed fragmentation, enabling deeper structural analysis.

Black et al. performed the structural analysis of Au25(pMBA)18 and Au36(pMBA)24 clusters using UVPD, which enabled the systematic cleavage of ligand staples (Au–S and C–S bonds) without disrupting the gold core. At higher laser doses, UVPD triggered monomer evaporation, generating Au4–Au20 bare gold cluster ions from Au25(pMBA)18, thereby permitting the accurate determination of the ligand and gold atom counts.117 Li and coworkers utilised UVPD to study the size dependence of gold clusters in catalytic applications. The Au144(PET)60 cluster was fragmented by UVPD at 193 nm to generate size-selected AunSm clusters (n = 12–122), and their acetylene adsorption was monitored by ESI-MS, revealing a clear size-dependent hierarchy in C2H2 binding. Further, they extended this study to a smaller Au25 cluster and showed that acetylene binding occurs up to ∼11 molecules per cluster. These studies demonstrate that smaller clusters have significantly stronger acetylene adsorption, highlighting the distinct electronic effects that govern catalytic activity in acetylene hydrochlorination.118,119 Jose et al. showed that UV photoactivation resulted in unique dissociation pathways in APCs such as [Ag29(BDT)12]3− and [PtAg24(DMBT)18]2−, primarily via electron photodetachment. UVPD leads to single ligand losses, perturbing the metal–ligand interface, with dissociation characteristics different from that in collision-based methods.120 The study by Li and coworkers provided direct experimental evidence for the photon energy-dependent photoreaction pathways of an [Au25(PPh3)10(SC2H4Ph)5Cl2]2+ (Au25) cluster and correlated these pathways with its photocatalytic performance on TiO2 (P25). Using photodissociation mass spectrometry (PD-MS), it was found that visible light (455 nm) induces the selective loss of the PPh3 and PPh3AuCl ligands, while preserving the Au25 core (Fig. 8a–c), exposing the active sites and enabling high catalytic activity. In contrast, UV light (193 nm) causes complete decomposition into small [AunSm]+ fragments, leading to a reduced performance due to cluster destabilisation. Fig. 8d and e show the mass spectrum of Au25 under ultraviolet light (193 nm).121 Collectively, these studies establish UVPD as a powerful technique for understanding complex nanostructures and linking their fragmentation behaviour to functional and catalytic properties with high specificity and precision.


image file: d5nr03845f-f8.tif
Fig. 8 Photodissociation of Au25 at 455 nm. (a) Wide-range photodissociation MS (in positive mode). (b) and (c) Enlarged views of panel a and assignment of the photofragments, respectively. (d) Wide-range photodissociation MS (in positive mode) spectrum of Au25 at 193 nm. (e) Extracted region of the Au19Sm (m = 0–4) species. Adapted from (a)–(e) ref. 121. Copyright 2023, the American Chemical Society.

3.3. Ion mobility–mass spectrometry (IM-MS)

Ion mobility–mass spectrometry (IM–MS) is a powerful analytical technique that separates gas-phase ions based on their size, shape, and charge by measuring their drift through a buffer gas under an electric field.122,123 Since its early development in the 1960s and integration with ESI and MALDI,124 IM–MS has evolved through innovations such as drift tube ion mobility spectrometry (DTIMS), travelling wave ion mobility spectrometry (TWIMS), and trapped ion mobility spectrometry (TIMS), a key tool for resolving isomers and probing gas-phase structures in fields such as structural biology, nanochemistry, and materials science. DTIMS is the most common method for the structural analysis of nanoclusters, where ions drift through a uniform electric field against a counter-flowing buffer gas. It enables direct, calibration-free calculation of collision cross sections (CCS) using the Mason–Schamp equation, making it ideal for early structural characterisation and a reference for other IMS techniques. The Mason–Schamp equation states that the mobility of an ion (K) is inversely proportional to its collision cross section (Ω), meaning that smaller, more compact ions move faster under an electric field than larger or more extended ions. Mathematically, it is expressed as follows:
image file: d5nr03845f-t1.tif
where Z is the charge of the ion, e is the elementary charge, N is the number of gas molecules, μ is the reduced mass of the ion–gas pair, kB is the Boltzmann constant, T is the gas temperature, and Ω is the ion–neutral collision cross section.125 TWIMS uses a stacked ring ion guide with RF and transient DC voltages to generate travelling waves that propel ions through a buffer gas, separating them by mobility. Higher-mobility ions are carried by the wave, whereas lower-mobility ions roll over it, taking longer to traverse the mobility cell. Although direct CCS calculation is not possible due to the dynamic field, CCS can be determined after calibration using standards with known values.126 TIMS is a recent innovation that traps ions by counterbalancing a buffer gas flow with a spatially varying electric field, holding them at defined positions based on their mobility, and sequentially releasing them as the electric field is reduced. This design offers high sensitivity, resolution, and improved duty cycle through synchronised accumulation and analysis. TIMS requires calibration of CCS and is widely used in structural biology and multi-omics.127,128 The structural information obtained from ion mobility spectrometry arises from the experimentally determined CCS, which reflects the average area of an ion as it collides with the buffer gas. Compact ions with smaller surface areas exhibit lower CCS values and move faster, whereas extended structures show larger CCS values and drift more slowly. The reduced mass term in the Mason–Schamp equation accounts only for the momentum exchange between the ion and gas molecules and does not contain any structural information. Thus, the shape or conformation is inferred indirectly from the CCS, which represents the dynamic interaction of the molecule with its environment rather than its exact atomic arrangement. When the measured CCS values are combined with molecular modelling or dynamic simulations, one can identify the most probable conformation and estimate the overall structural form. Modern ion mobility instruments employing drift-tube, trapped, and travelling-wave systems routinely achieve resolving powers of 200–400, while the extended-path or cyclic systems can reach up to about 700 after nearly 100 passes. These advances allow the separation of closely related conformers and intermediate states in proteins, peptides, and nanoclusters. However, current IM–MS methods provide qualitative information on molecular compactness and topology, and accurate atomic-scale structure determination still requires complementary spectroscopic or computational validation.129,130

IM-MS has emerged as a powerful hyphenated technique for understanding the structural complexity of atomically precise metal nanoclusters in the gas phase. In silver nanoclusters, IM-MS gave insights into gas-phase isomers, which are inaccessible through conventional mass spectrometry or crystallography. These isomers, although identical in mass, exhibited distinct drift times and CCS values, indicating significant differences in their three-dimensional structures. Baksi et al. reported the first experimental evidence for gas-phase dimers, trimers, and tetramers of Au25(PET)18 clusters using IM-MS, with their distinct drift times and CCS values confirming their existence. The monomer appeared at 12.7 ms (CCS = 297.8 Å2), the dimer at 10.8 ms (CCS = 453.4 Å2), and the trimer at 8.3 ms (CCS = 668.3 Å2), indicating an increase in their size and structural complexity. The formation of these aggregates was shown to be highly sensitive to the experimental conditions; increasing the He gas flow and lowering the cone voltage promoted their aggregation, while higher voltages led to their dissociation, reflecting the fragile, non-covalent nature of these gas-phase polymers.131 Pradeep and coworkers used IM-MS to demonstrate the presence of gas-phase isomers, with Ag44(SR)30 exhibiting multiple isomers in its 3 and 4 charge states, while Ag29(BDT)12 showed two isomers in its common 3 charge state. Density functional theory calculations indicated that this isomerism originates from the variations in ligand orientations and staple rearrangements, leading to differences in the overall geometry. In contrast, no isomeric species were observed for Au25(SR)18 or Ag25(SR)18, underscoring the role of ligand chemistry and charge state in governing structural diversity.40 Kalenius et al. provided the first experimental evidence for a gas-phase topological isomer of the well-studied Au25(SR)18 cluster in both anionic and cationic forms. This isomer, energetically close and topologically connected to the known ground-state structure, arises via a collective rotation of the icosahedral Au13 core without breaking any Au–S bonds. The measured collision cross sections closely match theoretical predictions, and the relative abundance of the isomeric structures can be controlled by in-source activation, demonstrating that interconversion between isomers is feasible in the gas phase.132 Zeng et al. demonstrated how ligand exchange can influence the structural and optical properties of atomically precise silver. Partially replacing the 1,3-benzene-dithiol (BDT) ligands with dihydrolipoic acid (DHLA) in Ag29(BDT)12 led to a 44-fold increase in its photoluminescence quantum yield. High-resolution electrospray ionisation mass spectrometry (HRESI-MS) confirmed the successful ligand exchange (Fig. 9a), with species containing up to six substituted ligands [Ag29(BDT)12−x(DHLA)x]3− (x = 0–6). The CCS value increased from 480 to 583 Å2 for x = 0–6 DHLA substitutions (Fig. 9b), which was consistent with DFT predictions and correlated with the increase in rigidity and reduced nonradiative decay.133 Chakraborty et al. used trapped ion mobility spectrometry (TIMS-MS) together with density functional theory (DFT) to investigate the fragmentation dynamics of [Ag29L12]3− clusters. This study showed that the cluster mainly dissociates by gradually losing [Ag5L3] units, which leads to fragments such as [Ag24L9]2− and [Ag19L6]. The experimental collision cross sections showed excellent agreement with DFT predictions, enabling the reliable structural assignment of these fragments. The larger [Ag24L9]2− and [Ag19L6] fragments retain compact superatom-like core-staple structures, indicating that kinetic control governs dissociation rather than thermodynamic stability.134 In another example of structural transformation, Baski et al. used TIMS to investigate alloy formation in Ag29(BDT)12(PPh3)4 nanoclusters through intercluster reactions with Cu12S6(DPPPT)4. This study showed that up to 14 Ag atoms could be replaced by Cu atoms, corresponding to nearly 50% exchange, without disrupting the overall cluster structure. TIMS measurements revealed a linear decrease in the collision cross section (CCS) with an increase in Ag/Cu exchange (Fig. 9c), indicating a gradual size contraction. DFT-based CCS simulations confirmed that the exchanged atoms are predominantly confined to the cluster surface, while the core remains intact.135 Roy et al. examined the interaction of [Ag29(L)12]3− nanoclusters with a secondary ligand (L′) using ion mobility mass spectrometry (IM-MS) supported by spectroscopy and DFT. IM-MS confirmed the formation of [Ag29(L)12]L′n3− adducts (n = 1–4), with distinct mass separations (∼m/z 116 per ligand). A systematic increase in collision cross-sections (CCSs) was observed as more L′ ligands attached, directly evidencing the progressive structural expansion of the nanocluster. The IM-MS data correlated closely with DFT models, validating the structural assignments. Fig. 9d clearly shows this trend, with mobilograms shifting to higher CCS values for each additional ligand, highlighting the sequential and specific nature of L′ binding.136 These studies highlight the role of IM-MS in revealing the dynamic, structural behaviour of ligand-protected metal nanoclusters, establishing it as an essential tool for probing isomerism, aggregation, ligand interactions, and compositional tuning at the atomic scale.


image file: d5nr03845f-f9.tif
Fig. 9 (a) ESI MS of an Ag29(BDT)12−x(DHLA)x NC solution showing a maximum of six ligands exchanged. An expanded view (black trace) is presented in the inset with the corresponding calculated spectra (red trace). A further expanded view of the MS spectrum of Ag29(BDT)12−x(DHLA)x3− with x = 1, which resolves the isotopologue distribution and shows an exact match with the calculated spectrum. (b) Drift time profile of Ag29(BDT)12−x(DHLA)x3− measured in IM mode, showing an increase in the size of the ligand exchanged NCs. (c) Extracted ion mobilograms, that is, ion intensity versus CCS, determined for CuxAg29−x(BDT)123− (x = 0–14) by TIMS-TOFMS. (d) Mobilograms of individual [Ag29]L′n3− (n = 0–4) ions showing an increase in CCS with an increase in the number of L′-adducts to [Ag29]3− NCs. Reproduced with permission from (a) ref. 133, (b) ref. 133, (c) ref. 135 and (d) ref. 136. Copyright 2021, 2020 and 2025, the American Chemical Society.

The cyclic ion mobility–mass spectrometry (cIM-MS) system is a significant advancement over conventional IM-MS, built on a Waters SYNAPT G2-Si platform with a 98 cm closed-loop travelling-wave (TW) ion mobility separator. Its racetrack-like geometry allows ions to traverse the mobility cell multiple times, increasing the resolving power with the square root of the number of passes from approximately 78 in a single pass to approximately 750 after 100 passes, providing “dial-up” mobility resolution. This instrument features a flexible electrode array and software-controlled optics, enabling multifunction experiments such as mobility selection, ion storage, activation, and IMSn, while maintaining high ion transmission. Fig. 10a schematically represents the instrument layout, highlighting the cIM device orthogonal to the main ion path, integration with quadrupole and TOF analysers, and associated ion guides and chambers. This design extends the IM-MS capabilities to the high-resolution, multifunctional structural analysis of molecular species.137 Its applications include the separation of isomeric pentasaccharides138 and conformational studies of ubiquitin ions,139 showcasing its ability to probe complex gas-phase structures.


image file: d5nr03845f-f10.tif
Fig. 10 (a) Schematic showing the Q-cIM-ToF instrument. (b) Arrival time distributions recorded after 10 separation passes using cyclic ion mobility spectrometry (cIMS): (A) (0,0), (B) (1,0), (C) (2,0), and (D) (3,0) ions. The TWCCSN2 values of the isomers of these species are indicated. These are mean values based on three different measurements. The standard error of the mean is within ±0.3 Å2. (c) Plot of experimental TWCCSN2 values (blue dots; lines are meant to guide the eye) obtained from (lower resolution) single pass measurements for the full range of (m,n) fragment ions as a function of their m/z values. Adapted from (a) ref. 137, (b) ref. 140 and (c) ref. 140. Copyright 2019 and 2025, the American Chemical Society, respectively.

Kappes and coworkers demonstrated the power of multi-pass cIM-MS in resolving subtle structural changes during the thermal decomposition of [Pt17(CO)12(PPh3)8]2+ clusters. Gas-phase CID coupled with cIM-MS resolved distinct isomeric fragments after CO desorption, with CCS differences of less than 1%, indicating CO loss from nonequivalent sites. Fig. 10b shows that sequential CO loss from [Pt17(CO)12(PPh3)8]2+ produces multiple structural isomers, as revealed by the distinct ion mobility peaks. (0,0) shows that the intact parent ion [Pt17(CO)12(PPh3)8]2+ has a single, well-defined structure with no isomeric forms. Upon sequential CO loss ((1,0) to (3,0)), the ion mobility spectra reveal multiple peaks, indicating the emergence of different isomeric structures. Fig. 10c presents the overall trend in CCS versus m/z for the fragment ions, showing an initial linear decrease in size as CO and benzene are lost, followed by a steeper decline when higher-energy pathways, such as phenyl and H2 elimination, generate a more compact and reorganised cluster framework. DFT calculations validated the observed fragment geometries. The Pt17 core remains robust throughout, demonstrating its stability.140

Similarly, Hennrich et al. used cIM-MS to study the superatom dianions [Mau24(C[triple bond, length as m-dash]CR)18]2− (M = Ni, Pd, and Pt), achieving the precise separation of three structurally analogous clusters based on minor CCS variations (Ni: 721.5 Å2, Pd: 723.3 Å2, and Pt: 724.9 Å2) after 50 passes. The high resolving power enabled direct correlation with both the crystallographic data and DFT models, confirming that the gas-phase geometries closely mirrored their solid-state analogues. Interestingly, the Ni-centred cluster exhibited energy-dependent isomerisation under collision-induced activation, producing a larger, previously unobserved structural form, while its Pd and Pt analogues remained conformationally stable. This demonstrates the ability of cIM-MS not only to resolve minute structural differences but also to capture dynamic isomerisation phenomena.141

cIM-MS opens new avenues for exploring the structural and dynamic behaviour of metal nanoclusters and complex molecular assemblies. Future research can utilize its ultra-high resolution and multi-pass capabilities to resolve subtle isomeric differences, monitor real-time conformational changes, and map detailed fragmentation pathways.

4. Expanding properties

The electronic properties of APCs are often studied in solution; however, solvent and counterion effects can distort the results. Thus, to overcome these limitations and understand the exact electronic structure, gas-phase techniques such as anion photoelectron spectroscopy (PES) are employed. PES directly measures fundamental parameters such as the HOMO–LUMO gap and electron affinity of mass-selected cluster anions in a vacuum, eliminating solvation and ion-pairing effects.142 Mass selection is a critical component of PES measurements, given that it isolates specific cluster ions and prevents spectral overlap or interference. Enhancements such as increased ion beam intensity and reduced laser fluence improve the measurement precision by minimising multiphoton artefacts. This allows the accurate determination of the electron binding energies, detachment dynamics, and superatomic orbital structures, revealing the core electronic features of nanoclusters. Multiple studies demonstrated the strength of mass-selected PES in uncovering the intrinsic behaviour of nanoclusters. Hirata et al. reported the first PES of [Au25(SC12H25)18], confirming its superatomic (1S)2(1P)6 electronic configuration and revealing an adiabatic electron affinity (AEA) of 2.2 eV, which is significantly lower than theoretical predictions. This highlighted the discrepancies between theory and experiment in modelling these clusters.143 Similarly, Hamouda et al. investigated [Au25(SG)18 − 6H]7−, a highly charged glutathione-protected cluster, and showed that its gas-phase optical absorption closely matches its solution-phase spectrum. This indicated that the core electronic structure remains stable across environments, with photodetachment occurring via tunnelling through a Coulomb barrier rather than fragmentation.144 Tasaka et al. studied a silver cluster [Ag44(SC6H3F2)30]4− and inferred that the cluster possesses unique stability despite its negative electron affinity. Electron loss was suppressed due to its strong repulsive Coulomb barrier, and fragmentation occurred preferentially through ligand–metal bond dissociation. PES, coupled with DFT and tunnelling models, elucidated the detachment mechanism and confirmed an 18-electron superatom structure.145 Ito et al. made some refinements in the PES measurements and studied ligand-protected M13 clusters. They identified that the previously known electron affinity values of M13 clusters were underestimated due to multiphoton effects. Owing to the improved ion intensity and reduced laser fluence, they measured more accurate AEA values, validating the theoretical models.146

Doping and ligand modifications were shown to modulate the electron affinities without altering the overall superatomic electronic framework. Kim et al. studied the PES of doped superatoms such as [XAg24(SR)18] (X = Ag and Au) and [YAg24(SR)18]2− (Y = Pd and Pt). They observed that doping with Pd and Pt significantly shifted the superatomic orbital energies and reduced AEAs, which was attributed to the changes in the core charge and Coulomb interactions. However, despite these energy shifts, the orbital ordering and HOMO–LUMO gaps remained consistent.147 Further, Ito et al. tested the supervalence bond (SVB) model for bi-icosahedral gold clusters, specifically the Au23 core in Au38(PET)24. Neutral precursors, [M1Au37(PET)24]0 (M = Pd and Pt), which are isoelectronic and structurally similar to Au38(PET)24, were synthesised and chemically reduced to form [M1Au37(PET)24] anions. The gas-phase anion (PES) of these mass-selected clusters revealed spectral features consistent with the superatomic orbital interactions predicted by the SVB model, providing direct experimental support for the bonding framework.41 Akazawa et al. investigated the intrinsic electronic structure of the gold nanocluster [Au38(PET)24]0 by measuring its HOMO–LUMO gap using gas-phase PES on the MALDI-generated [Au38(PET)24] anion. In their custom-built experimental setup (Fig. 11a), they integrated a MALDI source for ion generation, a time-of-flight mass spectrometer for mass selection, and a magnetic-bottle photoelectron spectrometer for electron kinetic energy analysis. This setup enabled stable generation and precise measurement of cluster anions in vacuum. The MALDI MS measurements confirmed the presence of an intact [Au38(PET)24] cluster and its fragmentation products (Fig. 11b). Fig. 11c presents the photoelectron spectra recorded at 266 nm and 213 nm, revealing the key spectral features attributed to electron detachment from the singly occupied molecular orbital (SOMO) and HOMO orbitals. Analysis of these spectra yields a direct gas-phase HOMO–LUMO gap of 0.78 ± 0.06 eV, which is smaller than the previously reported solution-phase values. This discrepancy was attributed to the structural changes upon reduction, notably the elongation of the Au23 core due to the occupation of an antibonding orbital.148 Recently, Tsukuda and coworkers used anion photoelectron spectroscopy and DFT to investigate how deprotonation of [Au25(pMBA)18−nH+](n+1)− affects the electronic structure of its Au13 (8e) core.149


image file: d5nr03845f-f11.tif
Fig. 11 (a) Schematic of the experimental apparatus. (b) Negative-mode MALDI mass spectrum of [Au38(PET)24]. (c) PE spectra of [Au38(PET)24] recorded with a 266 nm laser (red) and 213 nm laser (blue). Reproduced with permission from (a)–(c) ref. 148. Copyright 2025, the American Chemical Society.

Overall, gas-phase PES, in combination with high-resolution mass spectrometry and theoretical modelling, offers a robust and solvent-free platform for investigating the fundamental electronic structure of nanoclusters. It provides precise information on the superatomic orbitals, electron detachment processes, and the effects of structural and compositional modifications, thereby broadening our understanding on the superatom behaviour of nanoclusters.

5. Additional advances

5.1. CDMS

Charge detection mass spectrometry (CDMS) is a powerful analytical technique designed to overcome the limitations of traditional MS to analyse very large and heterogeneous nanomaterials, such as megadalton-sized nanoparticles, self-assembled nanoclusters, and virus assemblies. Conventional MS struggles to characterise these samples due to the overlapping charge states, broad mass distributions, and extremely high mass-to-charge (m/z) ratios, which reduce the detection efficiency and resolution.150

CDMS directly measures both the charge (z) and m/z of individual ions independently, enabling precise mass determination without assumptions about charge states. The instrument detects the image charge induced when ions pass through a conductive cylinder, combined with ion velocity and energy measurements, to calculate absolute mass. Since the initial coupling of CDMS with electrospray ionisation by Fuerstenau and Benner in 1995, CDMS has evolved significantly, especially through advances such as electrostatic linear ion traps (ELIT), which allow repeated single-ion measurements and improved charge resolution.

This technique excels at characterising large, heterogeneous biological assemblies, nanoparticles, and polymer assemblies, providing insights into their mass distribution spanning from the megadalton to gigadalton range. For example, studies on ligand-protected gold nanoclusters and their zinc-induced aggregates revealed broad mass distributions (∼75 MDa to >1 GDa), highlighting the ability of CDMS to analyse complex hierarchical nanomaterials with sub-30 nm dimensions. CDMS has also been successfully applied to synthetic polymer nanoobjects. Doussineau et al. developed a setup combining two charge detection devices (CDDs) with infrared multiphoton dissociation (IRMPD) to perform MS/MS on single megadalton ions, such as 7 MDa polyethylene oxide and 31.5 MDa lambda phage DNA. This single-ion MS/MS approach enabled ion trapping and repeated irradiation, allowing detailed, ensemble-free analysis of fragmentation dynamics in large molecules.151 Charleux and coworkers reported the first direct molar mass and mass distribution measurements of self-assembled amphiphilic block copolymer nano-objects without model-based assumptions, revealing their narrow mass distributions and charges approaching Rayleigh limits.152 Advancements in instrumentation have further expanded the capabilities of CDMS. William's group developed the single particle analyser of mass and mobility (SPAMM), integrating CDMS with tandem MS (MSn) and ion mobility measurements on individual ions up to 8 MDa. SPAMM tracks the ion kinetic energy, fragmentation through multiple stages, and ion mobility differences, revealing the dynamic behaviour, structural heterogeneity, and fragmentation pathways in large polymer ions. This represents a major leap in analysing large, complex ions with integrated mass, charge, and mobility data.153 Elliott et al. demonstrated that CDMS can simultaneously determine the mass and collisional cross-section of multiply charged protein ions by analysing frequency shifts during ion trapping. This provides structural information, along with accurate mass measurements, which is crucial for large heterogeneous proteins that are difficult to study using conventional methods.154 Todd et al. achieved a significant improvement in the resolution of CDMS through dynamic charge calibration and enhanced electrostatic linear ion trap design, attaining charge uncertainties below 0.2 elementary charges and m/z resolving power near 330. This enabled the resolution of highly heterogeneous viral assemblies and the tracking of intermediate species with unprecedented precision, which solidifies CDMS as a powerful tool to analyse complex biomolecular systems.155

Harper et al. demonstrated that CDMS can rapidly measure the mass and charge of thousands of individual ∼100 nm nanoparticles with sub-nanometer diameter resolution and about 1% mass uncertainty. Unlike TEM, CDMS offers faster analysis, high throughput, and sensitivity to surface chemistry, distinguishing nanoparticle populations based on charge differences even when their masses are similar. This positions CDMS as a powerful complementary tool for nanoparticle density determination, surface analysis, and quality control.156 Orbitrap-based CDMS has also advanced considerably in the past decade. The Heck group demonstrated that multi-megadalton ions remain remarkably stable in the Orbitrap analyser, surviving extended gas-phase collisions mostly via solvent loss. Using a frequency-chasing method to correct transient frequency drifts, they achieved mass resolutions up to 100[thin space (1/6-em)]000 and sub-10 ppm accuracy for large particles such as viral capsids.157,158

The Jarrold group demonstrated CDMS and Orbitrap-based individual ion mass spectrometry (I2MS) as breakthrough techniques for analysing large, heterogeneous biomolecules such as viruses, gene therapy vectors, and vaccines. CDMS uses an electrostatic linear ion trap (ELIT) for repeated ion detection, achieving sub-charge-unit resolution and high throughput (>100 ions per s).159 Sooraj et al. investigated the charging behaviour of ligand-protected gold nanoparticles using CDMS coupled with ESI. They compared the charging behaviour of 20 nm Au-MUTAB (50 MDa) and 60 nm Au-citrate NPs (1.3 GDa). The results showed that Au-MUTAB achieved a charging state higher than the Rayleigh limit for a 20 nm water droplet (z/zR ≈ 2.1) (Fig. 12a). However, Au-citrate NPs could achieve only a charging of ∼0.45 times the Rayleigh limit, under identical conditions (Fig. 12b). This study correlated charging capacity under ESI with the ligand–gold binding energy, estimating 1.05 eV for Au-MUTAB and 0.09 eV for Au-citrate. This work demonstrated the ability of CDMS to quantitatively probe the ligand binding strength and confirmed its utility in analysing large nanoparticles with complex interfaces and high heterogeneity.160


image file: d5nr03845f-f12.tif
Fig. 12 (a) Charge vs. size plot of Au-MUTAB nanoparticles. (b) Charge vs. size plot of Au–citrate nanoparticles. Adapted from ref. 160. Copyright 2025, the American Chemical Society.

Charge detection mass spectrometry (CDMS) has achieved significant progress in the accuracy of charge detection, advancing from early systems limited by electronic noise to modern instruments capable of unit charge resolution.161,162 Improvements such as random trapping mode, cryogenically cooled junction field-effect transistor (JFET),162 extended trapping times, and dynamic calibration have reduced the charge uncertainty to below 0.2 e. Meanwhile, feedback-free charge-sensitive amplifiers now permit the detection of singly charged ions with high precision.163 Orbitrap-based CDMS typically achieves a charge accuracy of 1–3e, whereas custom instruments demonstrate sub-charge resolution.164,165 However, despite these advances, CDMS faces experimental challenges in ionizing and analysing large particles, where low ionization yields, nonvolatile buffers, and insulating ligands impede efficient charge transfer and desolvation.166 Buffer exchange in volatile, ESI-compatible solvents can compromise the integrity of nanoparticles, and the single-ion detection mode inherently limits the throughput. Emerging solutions such as multiplexed detection and improved ion-optical designs aim to enhance the sensitivity and accommodate complex, heterogeneous nanosystems. With the availability of commercial CDMS instruments with high resolution, studies on NCs will reach new heights.

5.2. Mass photometry

Mass photometry (MP) is a label-free optical technique that enables the direct measurement of the molecular mass of individual particles in solution by detecting their interferometric scattering (iSCAT) signal upon landing on a surface. It relies on the proportionality between scattering contrast and molecular mass, allowing rapid and quantitative analysis under native conditions. The interferometric contrast, arising from the interference between scattered and reflected light at the glass–buffer interface, scales linearly with mass and is calibrated using known standards. Accurate conversion requires calibration in the same buffer as the sample, given that small refractive-index mismatches can introduce errors. Solvent-related interference, seen as baseline noise or contrast instability, can arise from impurities, buffer composition, temperature shifts, or surface contamination. These effects are minimized by filtering (0.22 µm) the buffer, maintaining a moderate ionic strength (≥10 mM), reducing the glycerol and detergent levels, and equilibrating the samples and optics to room temperature. Under these optimized conditions, MP provides a stable and reproducible linear relationship between scattering contrast and molecular mass, enabling precise single-particle mass measurements in complex environments.167

Taylor et al. established iSCAT microscopy as a highly sensitive platform for detecting unlabeled biomolecules, smaller nanoparticles (∼2 nm), and proteins (∼50–65 kDa), with nanometer spatial and sub-millisecond temporal resolution. This study emphasised the linear response of iSCAT with particle volume and its utility in tracking viruses and proteins in real-time, without photobleaching or labelling.168 Building on this, Melo et al. developed an optimised iSCAT setup with ratiometric imaging to accurately measure gold nanoparticles (<20 nm) in solution. They demonstrated the high-throughput, real-time classification of thousands of particles per minute, and revealed diffusion-limited deposition behaviour, where larger particles reached the surface earlier due to their slower diffusion. The obtained particle size distribution was in good agreement with the TEM results, validating the accuracy of this method. The application of MP has recently been extended beyond biological samples to nanoclusters.169 Roy et al. extended MP to study the solvent-induced aggregation of atomically precise silver–gold alloy nanoclusters, [Ag11−xAux(DPPB)5Cl5O2]2+ (Fig. 13a). Using β-amylase and thyroglobulin standards, they calibrated MP in the range of 50–660 kDa (r2 = 0.9999, ∼5% error). Fig. 13b shows the instrumental setup and mechanism of MP. In the experiment, initially, NC aggregates are dispersed in a solvent mixture and land on a non-coated glass surface. Upon landing, each particle causes a localised reduction in reflected light intensity due to interferometric scattering. These events are captured optically as dark spots, and the scattering contrast is quantitatively linked to mass using calibration curves. The schematic shows the flow from solution to detection, i.e., nanoclusters aggregate in the solvent, deposition on the glass surface, and optical detection via a high numerical aperture objective lens through immersion oil. MP revealed that the average mass increased from 65 to 103 kDa with an increase in the solvent polarity, corresponding to aggregation numbers of 13 to 50 nanoclusters (Fig. 13c). Time-resolved MP measurements captured the real-time aggregation dynamics, which correlated well with the cryo-EM and room-temperature TEM results, confirming the growth and hollow-sphere morphology of the aggregates.33


image file: d5nr03845f-f13.tif
Fig. 13 (a) (i) Calculated structure (x = 2), (ii) metal, Ag11−xAuxcore (x = 2), and (iii) ESI MS of [Ag11−xAux(DPPB)5Cl5O2]2+ (x = 1–5) nanoclusters. In the inset, calculated isotopic distribution is stacked with the experimental one. (b) Concept and experimental implementation of MP. Parts in the graphic representation: (1) solvent mixture (sol mix) containing nanoclusters; (2) nanocluster aggregates in solution; (3) glass surface; (4) immersion oil; and (5) objective lens. Single-particle landing event on a non-coated cover slide is shown on the right. (c) Stacked plot of the MP histogram of various-sized nanoaggregates with the counts of particle landing events and varying solvent composition. Adapted from ref. 33. Copyright 2024, The Royal Society of Chemistry.

6. Non-noble metal nanoclusters

The study of non-noble metal nanoclusters, particularly those derived from first-row transition metals such as cobalt (Co), iron (Fe), and nickel (Ni), has significantly broadened the scope of atomically precise materials beyond the traditional gold and silver systems. These clusters exhibit diverse electronic, magnetic, and catalytic properties.170–172 MS has emerged as an indispensable technique, providing insights into their composition, stability, and growth mechanisms. The composition of the well-known cobalt sulfide superatom [Co6S8L6]+ (L = ligand) was established through high-resolution mass spectrometric analysis. ESI-MS confirmed the precise size and monodispersity of neutral nickel nanoclusters such as Ni4(PET)8 and Ni6(PET)12, sometimes requiring the addition of agents such as cesium acetate (CsOAc) to facilitate ionization, yielding species such as [Ni6(PET)12 + Cs]+.173 MS plays a key role in understanding the atom-by-atom substitution and redox behavior in non-noble metal nanoclusters. Gholipour-Ranjbar et al. demonstrated the incorporation of up to six Fe atoms into the cobalt sulfide core of [Co6−xFexS8L6]+ clusters, whereas Ni substitution yielded only the singly substituted species [Co5NiS8L6]+, reflecting distinct substitution energetics. MS further revealed the pronounced redox sensitivity of Fe-doped clusters, which readily oxidized in solution to generate abundant doubly charged species [Co6−xFexS8L6]2+ (particularly for x ≥ 4), highlighting their higher oxidation propensity compared to their Ni- or Co-only analogues.174 Beyond composition, CID studies gave important information about the bonding and gas-phase stability of these clusters. CID analysis of [Co5MS8L6]+ clusters (M = Mn, Fe, Co, and Ni) revealed that sequential ligand loss is the dominant pathway, which competes with the unusual loss of ligand sulfide (LS). Fe-substituted clusters, such as [Co5FeS8L6]+, demonstrated substantially reduced stability towards the first ligand loss compared to their Ni- or Co-analogs, characterised by lower collision energies needed for 50% fragmentation (CID50%), indicating weaker metal–ligand bonds.175 Li et al. utilized ESI-MS and IM–MS to elucidate the composition and structure of a nickel chalcogenide nanocluster, [Ni3S3H(PEt3)5]+, unlike the M6S8 frameworks typically formed from Co or Fe precursors. The observed m/z 863.1792 peak and isotopic pattern validated its composition (Fig. 14a), while deuteration studies showed that hydrogen is incorporated during synthesis. IM–MS analysis, supported by theoretical CCS calculations, confirmed a planar Ni3S3 core and the absence of isomers.176 ESI-MS played a central role in confirming the composition and charge states of the open-shell nanocluster [Ni30S16(PEt3)11], revealing peaks corresponding to its mono- and di-cationic species at m/z 3572.43 and 1786.20, respectively. In situ ESI-MS monitoring further elucidated its formation pathway through smaller intermediates, such as [Ni8S5(PEt3)7]+, [Ni20S12(PEt3)7]+, [Ni21S14(PEt3)7]+, [Ni21S14(PEt3)8]+, [Ni23S14(PEt3)9]+ and [Ni26S14(PEt3)10]+, establishing the sequential cluster growth mechanism leading to the final Ni30 species.177 Higaki et al. recently reported a 55-atom iron cluster, which has been characterized via ESI-MS, confirming the dicationic formula [Fe55H46(PtBu3)12]2+ (Fig. 14b). Deuterium labeling coupled with ESI-MS further traced the H/D exchange pathways, revealing extensive hydrogen mobility across the cluster surface and ligand framework during synthesis, while the final species remained exchange-inactive.178
image file: d5nr03845f-f14.tif
Fig. 14 (a) Representative positive-mode ESI mass spectrum of cationic Pet3-ligated nickel sulfide NCs. The inset shows the experimental isotopic pattern (blue) of [Ni3S3H(PEt3)5]+ overlaid with the calculated pattern (red). (b) Positive-mode ESI mass spectra of Fe55 in THF. Insets show the observed and simulated isotope patterns of the major peaks. Adapted from (a) ref. 176 and (b) ref. 178. Copyright 2025, John Wiley and Sons. Copyright 2025, the American Chemical Society.

These studies highlight how advances in MS have transformed the understanding of non-noble metal nanoclusters, providing atomic-level insights into their composition, substitution behavior, structural motifs, and hydride dynamics.

7. Materials and applications of ESI

ESI-MS, traditionally an analytical technique, has undergone a significant transformation into a powerful preparative method for materials synthesis, through techniques such as electrospray deposition (ESD) and ion soft landing (SL). These approaches enable precise control over composition, morphology, thickness, and surface patterning, without the need for additives, ligands, or reducing agents.179–181 ESD is a simple, ambient method that deposits charged microdroplets onto substrates, where solvated ions nucleate into nanostructures.182 It supports the fabrication of diverse materials, including nanoparticles,183 nanowires,184 nanosheets,185 nanobrushes,186 nanoclusters,187 and onion-like carbons.188 ESD was employed to directly deposit hierarchically structured TiO2 spheres onto FTO substrates, serving as efficient photoelectrodes in dye-sensitised solar cells.42 In another example, ESD enabled the fabrication of hydrophilic–hydrophobic patterned silver nanowire “nanobrushes” that mimic natural water-harvesting systems and achieved record efficiencies in atmospheric moisture collection.43 Using a home-built nano-electrospray source (Fig. 15a), Jose et al. deposited charged microdroplets of a Co6S8 cluster solution onto ultrapure water, forming a transparent thin film of vertically aligned nanoplates (Fig. 1b) (∼200 nm thick and ∼600 nm edge length). The nanoplates of Co6S8 cluster formed via electrospray deposition provide a high surface area, catalytically active film enabling the sensitive and selective electrochemical detection of As3+ in water.189 Jana et al. fabricated a porous, luminescent Cu4@ICBT film via ambient electrospray deposition (ESD) that selectively and reversibly senses nitroaromatic vapours.190
image file: d5nr03845f-f15.tif
Fig. 15 (a) Schematic of our home-built electrospray setup. The inset shows a photographic image of the nanospray plume generated from the tip of the capillary. The plume is visualized using a green laser, which scatters from it. (b) Large-area FESEM micrographs of the vertically aligned nanoplates. (c) Schematic of mass-selective cryo-EM sample preparation using the native ES-IBD workflow. Adapted from (a)–(b) ref. 189 and (c) ref. 198. Copyright 2023, the American Chemical Society. Copyright 2022, National Academy of Sciences.

SL is a mass-selective technique that deposits intact polyatomic ions onto surfaces at low kinetic energies (∼10 eV), preserving their molecular structure and charge state. It enables contamination-free fabrication due to the absence of counterions and allows precise control over surface composition and functionality.191,192 SL has been used to prepare atomically defined metal clusters (e.g., Nin, Ptn, and Aun) for catalytic CO oxidation,193 designing redox-active electrode–electrolyte interfaces with polyoxometalates,194 and fabricating protein microarrays195 with retained biological activity.196 Johnson et al. demonstrate that soft landing of mass-selected ions enables the preparation of clean, high-coverage, monodisperse Au11 clusters on surfaces, overcoming the limitations of solution synthesis and facilitating precise structural analysis by TEM/STEM.197 A notable extension is native electrospray ion-beam deposition (native ES-IBD), which enables the solvent-free, mass-selected deposition of folded proteins for cryo-EM. A schematic representation of mass-selective cryo-EM sample preparation using the native ES-IBD workflow is shown in Fig. 15c. It avoids ice formation and contamination, yielding homogeneous, structurally intact samples suitable for 3D reconstruction, bridging mass spectrometry and structural biology.198

ESD and SL extend electrospray ionisation into material synthesis by enabling the controlled deposition of ions or charged droplets onto surfaces. SL allows mass and charge-selected species to be precisely immobilised, ideal for chemically defined interfaces, while ESD enables the ambient, ligand-free fabrication of diverse nanostructures (e.g., nanoparticles, nanosheets, and nanobrushes) with tunable morphology and functionality, which are applicable in catalysis, sensing, and bioimaging.

8. MS-guided insights into catalysis

Mass spectrometry has developed rapidly in recent years and has established itself as a central technique in nanoscience for characterising materials at the atomic level. Nanocluster chemistry demands a precise understanding of the composition, structure, and electronic properties of APCs, which makes mass spectrometry a primary tool for their characterisation. In several aspects of nanoclusters, MS provides greater insights than the established methods, such as electron microscopy and optical spectroscopy. It allows high-resolution mass analysis and helps understand their growth mechanisms, reaction kinetics, fragmentation pathways, and structure–property relationships. These aspects are key to designing new functional nanomaterials. MS-based insights into cluster composition and ligand dynamics also help identify active sites and correlate structural features with catalytic, optical, and electronic behaviour, advancing the rational design of functional materials.

Recent studies show that mass spectrometry not only helps in characterising nanoclusters but also provides direct understanding of their catalytic behaviour. In situ and real-time mass spectrometric studies allow the detection of short-lived intermediates and reaction products formed during catalysis.199 These observations help identify the active sites and the role of supports or ligands in promoting specific reaction steps. For example, real-time MS tracking of photocatalytic degradation on g-C3N4 and TiO2 revealed their distinct oxidative pathways under visible and UV light, while Pd-based systems showed surface-specific dehydrogenation behaviour, clarifying the active roles of metal sites and supports.200 Similarly, deep-learning-enabled single-particle mass spectrometry now quantifies the reaction products from individual nanoparticles, linking their surface structure to catalytic turnover with unprecedented precision.201 Together, these developments establish MS as a predictive tool for correlating atomic-scale composition and ligand dynamics with macroscopic properties such as activity, selectivity, and stability. This approach also extends to other fields such as photonics and nanoelectronics, where MS-based insights are being used to design materials with improved optical, electronic, and chemical properties.

9. Current limitations and challenges

Although mass spectrometry has emerged as a powerful technique for studying atomically precise nanoclusters, several challenges continue to restrict its wider application. The ionisation efficiency of large or weakly charged clusters remains low, leading to signal suppression and incomplete detection, while maintaining the integrity of fragile species during soft ionisation remains a persistent concern. Techniques such as ESI and MALDI, though gentle, can still induce partial fragmentation or ligand loss, complicating structural interpretation. Its quantitative accuracy is further affected by overlapping charge states, adduct formation, and matrix-dependent effects. Instrumental limitations also pose constraints; the transmission efficiency of large ions is often low, and the resolving power of most analysers decreases significantly at higher mass ranges, limiting the precise characterisation of high-nuclearity clusters and assemblies.

Ion mobility–mass spectrometry (IM–MS) provides valuable insights into molecular compactness and conformational states through the experimentally determined CCS, but it also has limitations. The CCS reflects an averaged measure of ion–gas interactions and does not directly describe atomic-level structures. Consequently, reliable interpretation requires correlation with molecular modelling or dynamics simulations. Although modern drift-tube, trapped, and travelling-wave instruments typically achieve resolving powers of 200–400, and cyclic designs may extend this to about 700, both their mass range and resolution remain insufficient for large and heterogeneous nanoclusters.

Overcoming these limitations will require improved intact ionisation methods, higher transmission efficiency, and ultrahigh-resolution instruments capable of maintaining precision at extended mass ranges. The continued integration of IM–MS with spectroscopic and theoretical approaches will be essential for achieving accurate structural determination, reliable structure–property correlations, and a predictive understanding of nanocluster behavior across different environments.

10. Conclusions and future perspectives

Recent advances in mass spectrometry have positioned it as a central analytical method in nanoscience for characterising materials at the atomic level. Nanocluster chemistry demands a precise understanding of the composition, structure, and electronic properties, which makes mass spectrometry a primary tool for the characterisation of APCs. In several aspects of nanoclusters, MS provides greater insights than the established methods, such as electron microscopy and optical spectroscopy. It allows high-resolution mass analysis and helps understand the growth mechanisms, reaction kinetics, fragmentation pathways, and structure–property relationships. These aspects are key to designing new functional nanomaterials. MS-based insights into cluster composition and ligand dynamics also help identify active sites and correlate structural features with catalytic, optical, and electronic behaviour, advancing the rational design of functional materials. A summary of APCs characterized by MS to date is provided in Table 1.
Table 1 Summary of atomically precise nanoclusters characterised by mass spectrometry thus far (as of July 31, 2025, using Web of Science using “nanoclusters”, “metal clusters”, “mass spectrometry” and “mass” as keywords). Unprotected or naked clusters are not included. The list is alphabetical and in ascending order of nuclearity of clusters. Alloy clusters, listed separately, are arranged in ascending order of total nuclearity. For each nuclearity, alphabetical order is followed
Core Ligands Composition Counter ions Ionization Fragmentation/ion-mobility/mass selected PES Ref.
Ag2 1,1-Bis(diphenylphosphino)methane Ag2(dppm)2(AcO)2 ESI-MS 213
Ag6 Oligonucleotide dC12 (Ag+)6 dC1210− ESI-MS 214
Ag6 Diisopropyldithiophosphate, 1,1-bis(diphenylphosphino)methane [Ag6{S2P(OiPr)2}4(dppm)2] ESI-MS 215
Ag6 1,1-Bis(diphenylphosphino)methane Ag6(dppm)4(AcO)3 OAc ESI-MS 213
Ag7 2,3-Dimercaptosuccinic acid Ag7(DMSA)4 ESI-MS 216
Ag7 Mercaptosuccinic acid Ag7(H2MSA)7 MALDI-MS 217
Ag8 Mercaptosuccinic acid Ag8(H2MSA)8 MALDI-MS 217
Ag8 (3,5-Dimethyl-4-(phenyldiazenyl)-1H-pyrazole), (bis(diphenylphosphino)methane), isopropylbenzenethiol [Ag8(iPrPhS)5(dppm)3(azopz)2]·ClO4 ClO4 ESI-MS 218
Ag8 Bisimidazole Ag8K2L4(CO3)2(PF6)6 ESI-MS 219
Ag9 Iodide Ag9I2 ESI-MS 220
Ag9 Mercaptosuccinic acid Ag9(H2MSA)7 ESI-MS 221
Ag9 1,2-Benzenedithiolate [Ag9(1,2-BDT)6]3− ESI-MS 222
Ag9–15 Glutathione Ag9–15(SR)5–10 ESI-MS 223
Ag10 Diisopropyldithiophosphate [Ag10{S2P(OiPr)2}8] ESI-MS 224
Ag11 Glutathione [Ag11(SG)7] ESI-MS MS/MS (SID), ion mobility 225 and 226
Ag11 Deoxyribonucleic acid Ag11(DNA)2 ESI-MS 227
Ag12 tert-Butylthiol, trifluoroacetate Ag12(TBT)6(TFA)6(pyz)6]·2CH3CN Ag12S2(TBT)8(TFA)4(bpy)8]·bpy ESI-MS 228
Ag14 3,4-Difluoro-benzenethiol, triphenylphosphine Ag14(SC6H3F2)12(PPh3)8 ESI-MS 229
Ag15 Bovine serum albumin Ag15@BSA MALDI-MS 230
Ag15 1,6-Bis(diphenylphosphino)hexane [Ag15H13(DPPH)5] ESI-MS MS/MS (CID) 231
Ag15 Glutathione Ag15(SG)11 ESI-MS 232
Ag16 tert-Butyl thiol, trifluoroacetate [Ag16(TBT)8(TFA)7(CH3CN)3Cl] ESI-MS 233
Ag16 Deoxyribonucleic acid Ag16Cl2(DNA)2 ESI-MS 234
Ag16 Deoxyribonucleic acid Ag16Cl2(DNA)2 ESI-MS MS/MS (CID), ion mobility 235
Ag17 Deoxyribonucleic acid Ag17(DNA)2 ESI-MS 236
Ag17 tert-Butyl thiol, trifluoroacetate [Ag17(TBT)8(TFA)7(CH3CN)3Cl] ESI-MS 233
Ag17 1-((Naphthalen-4-yl)ethyl)prop-2-yn-1-amine [Ag17(NYA)12]3+ ESI-MS 237
Ag17 ortho-Carboranethiol [Ag17(o1-CBT)12]3− ESI-MS MS/MS (CID) 238
Ag18 Deoxyribonucleic acid Ag18(DNA)2 ESI-MS 239
Ag18 Triphenylphosphine [Ag18H16(TPP)10]2+ ESI-MS 240
Ag19 1,2-Bis(diphenylphosphino)methane, phenylacetylene [Ag19(dppm)3(PhC[triple bond, length as m-dash]C)14](SbF6)3 SbF6 ESI-MS 241
Ag20 Dithiophosphonate [Ag20[S2P(OiPr)2]12] ESI-MS 242
Ag21 Dithiophosphonate, 4-methoxythiophenol [Ag21{S2P(OR)(p-C6H4OCH3)}12]PF6 PF6 ESI-MS 243
Ag21 Dithiophosphonate [Ag21[S2P(OiPr)2]12]+ ESI-MS 244
Ag21 4-tert-Butylthiacalix[4]arene [Ag21(H2BTCA)3(O2PPh2)6]SbF6 SbF6 ESI-MS 245
Ag21 Deoxyribonucleic acid Ag21(DNA)3 ESI-MS 246
Ag21 1-Ethynyl-3,5-dimethoxybenzene [Ag21(C[triple bond, length as m-dash]CC6H3-3,5-R2)6-(O2PPh2)10]SbF6 SbF6 ESI-MS 245
Ag21 4-Formylphenylethyne [Ag21(Ph2PO2)10(p-CHOPhC[triple bond, length as m-dash]C)6]SbF6 SbF6 ESI-MS 247
Ag21 9-SH meta-carboranethiol, triphenylphosphine [Ag21(MCT)12(TPP)2] ESI-MS MS/MS (CID) 248
Ag22 1,2-Bis(diphenylphosphino)ethane, 2,5-dimethylbenzenethiol Ag22(dppe)4(2,5-DMBT)12Cl4]2+ ESI-MS 249
Ag24 tert-Butylthiol, proline Ag24(StBu)10(L/D-proline)8(NO3)4(H2O) ESI-MS 250
Ag25 2,4-Dimethylbenzenethiol Ag25(DMBT)18 ESI-MS MS/MS (CID) 60 and 111
Ag25 1,2-Bis(diphenylphosphino)ethane [Ag25H22(DPPE)8]3+ ESI-MS 240
Ag26 Tris(4-fluorophenyl)phosphine [Ag26H22(TFPP)13]2+ ESI-MS 240
Ag27 1,4-Bis(diphenylphosphino)butane [Ag27H22(DPPB)7]3+ ESI-MS MS/MS (CID) 231
Ag28 Deoxyribonucleic acid Ag28(DNA)2 ESI-MS 251
Ag29 1,3-Benzenedithiol, triphenylphosphine Ag29(BDT)12(TPP)4 ESI-MS MS/MS (CID) 111 and 252
Ag29 1,3-Benzenedithiol, fullerene [Ag29(BDT)12(C60)n]3− ESI-MS MS/MS (CID), ion mobility 253
Ag29 1,3-Benzenedithiol, triphenylphosphine Ag29(BDT)12(TPP)4 ESI-MS MS/MS (UVPD) 120
Ag29 Dihydrolipoic acid, 1,3-benzenedithiol Ag29(BDT)12−x(DHLA)x ESI-MS 133
Ag29 1,3-Benzenedithiol, 1,2-bis(diphenylphosphino) ethane Ag29(BDT)12(dppe)4 ESI-MS 254
Ag29 Lipoic acid Ag29(LA)19 ESI-MS MS/MS (CID), ion mobility 255
Ag29 1,3-Benzenedithiol, 2,2′-[1,4-phenylenebis(methylidynenitrilo)]bis[benzenethiol] [Ag29(L)12]L′4 ESI-MS Ion mobility 136
Ag30 Captopril Ag30(Capt)18 ESI-MS 256
Ag31 Glutathione Ag31(SG)19 ESI-MS 232
Ag31 6-(Dibutylamino)-1,3,5-triazine-2,4-dithiol Ag31(TRZ)10 ESI-MS 257
Ag31 Glutathione Ag31(SG)19 ESI-MS 258
Ag32 Glutathione Ag32(SG)19 ESI-MS 259
Ag32 N-(2-Mercaptopropionyl)glycine Ag32(MPG)19 ESI-MS, MALDI-MS 260
Ag33 4-tert-Butylthiacalix[4]arene, cyclohexanethiol Ag33(TC4A)4(CyS)10 ESI-MS 261
Ag34 3,3-Dimethyl-1-butyne Ag34(tBuC[triple bond, length as m-dash]C)24(CH3COO)2 CH3COO ESI-MS 262
Ag34 4-tert-Butylbenzyl mercaptan Ag34S3SBB20(CF3COO)62+ ESI-MS 263
Ag35 3,3-Dimethyl-1-butyne, 4-tert-butylthiacalix[4]arene [Ag35(H2L)2(L)(C[triple bond, length as m-dash]CBut)16]3+ ESI-MS 264
Ag37 Trifluoroacetate, tert-butylbenzenethiol [Ag37S4(SC6H4tBu)24(CF3COO)6(H2O)12] ESI-MS 265
Ag39 Pentafluorobenzenethiol, triphenylphosphine [Ag39(PFBT)24(TPP)8]2− ESI-MS 266
Ag40 1,7-Bis(mercapto)-m-carborane, triphenylphosphine Ag40(C2B10H10S2)12(PPh3)8 ESI-MS 69
Ag40 2,4-Dimethylbenzenethiol [Ag40(2,4-DMBT)24(PPh3)8] ESI-MS 267
Ag40 Dimethylbenzenethiol, triphenylphosphine [Ag40(SPhMe2)24(PPh3)8](NO3)2 ESI-MS MS/MS (CID) 268
Ag42 o-Carborane-1,2-dithiol, triphenylphosphine [Ag42(CBDT)15(TPP)4]2− ESI-MS MS/MS (CID) 269
Ag42 6-(Dibutylamino)-1,3,5-triazine-2,4-dithiol Ag42(TRZ)13 ESI-MS MS/MS (CID) 257
Ag42 4-tert-Butylthiacalix[4]arene Ag42(MoO3-TC4A)6(EtS)14(CH3CN)5Cl ESI-MS 270
Ag44 4-tert-Butylthiacalix[4]arene Ag44(BTCA)6 ESI-MS 271
Ag44 5-Mercapto-2-nitrobenzoic acid [Ag44(MNBA)30]4− ESI-MS 272
Ag44 4-Mercaptobenzoic acid Na4Ag44(MBA)30 ESI-MS 273
Ag44 2-Ethylbenzenethiolate, triphenylphosphine Ag44(EBT)26(TPP)4 MALDI-MS 274
Ag44 Benzeneselenol [Ag44(SePh)30]4− ESI-MS 275
Ag44 Benzeneselenol [Ag44(SePh)30]4− MALDI-MS 276
Ag44 4-Mercaptobenzoic acid M4Ag44(MBA)30 ESI-MS 277
Ag44 3,4-Difluorobenzenethiolate [Ag44(SC6H3F2)30]4− ESI-MS Mass-selected PES 145
Ag44 4-Fluorothiophenol Ag44(4-FTP)30 ESI-MS MS/MS (CID), ion mobility 40, 111 and 278
Ag46 2,4-Dimethylbenzenethiol, triphenylphosphine [Ag46(SPhMe2)24(PPh3)8](NO3)2 ESI-MS 268
Ag47 3,3-Dimethyl-1-butyne, L-/D-valine, L-/D-isoleucine [Ag47L12(C[triple bond, length as m-dash]CtBu)16]BF4 BF4 ESI-MS 279
Ag48 3,3-Dimethyl-1-butyne [Ag48(C[triple bond, length as m-dash]CtBu)20(CrO4)7] CrO4 ESI-MS 280
Ag48 1-Adamantanethiol, cyclohexanethiol Ag48Cl14(S-Adm)26(S-c-C6H11)4 ESI-MS 281
Ag50 1,3-Bis(diphenylphosphino) propane, 1-adamantanethiol Ag50Cl16(S-Adm)28(dppp)2 ESI-MS 250
Ag50 1,1-Bis(diphenylphosphino) methane Ag50(dppm)6(SR)30 ESI-MS 282
Ag52 Isopropylmercaptan Ag52(iPrS)25(CF3COO)16(H2O)3(CH3OH)2] ESI-MS 283
Ag52 N,N′-Di(5-fluoro-2-pyridinyl)formamidine [Ag52(5-F-dpf)16Cl4](SbF6)2 SbF6 ESI-MS 284
Ag53 N,N′-Di(5-methyl-2-pyridinyl)formamidine [Ag53(5-Me-dpf)18](NO3)5 NO3 ESI-MS 284
Ag54 4-tert-Butylthiacalix[4]arene, cyclohexanethiol Ag54(TC4A)6(CyS)11(OAc)4(CH3CN)2Cl Cl ESI-MS 261
Ag55 4-tert-Butylbenzylthiol, phenylethanethiol Ag55(SR)31 ESI-MS, MALDI-MS 285
Ag58 Trifluoroacetic acid, isopropylthiophenol Ag58(iPrC6H4S)40(CF3COO)6(H2O)10 ESI-MS 286
Ag59 2,5-Dichlorobenzenethiol [Ag59(2,5-DCBT)32]3− ESI-MS 287
Ag60 tert-Butylthiol [Ag60(tBuS)20(o-CH3OPhCOO)16(H2O)4(Cl)2] Cl ESI-MS 288
Ag61 Dipyridylamine Ag61(dpa)27(SbF6)4 SbF6 ESI-MS 70
Ag67 2,4-Dimethylbenzenethiol, triphenylphosphine [Ag67(SPhMe2)32(PPh3)8]3+ ESI-MS 62
Ag68 4-tert-Butylbenzylmercaptan Ag68(SBB)34 MALDI-MS 289
Ag71 1,1-Bis-(diphenylphosphino)methane, tert-butylthiol [Ag71(S-Bu)31(dppm)](SbF6)2 SbF6 ESI-MS 290
Ag74 Phenylacetylene Ag74(C[triple bond, length as m-dash]CPh)44 ESI-MS 71
Ag74 2-Methylphenylacetylene Ag74(2-CH3C6H4C[triple bond, length as m-dash]C)44 ESI-MS 291
Ag75 Glutathione Ag75(SG)40 ESI-MS 292
Ag78 1,1-Bis-(diphenylphosphino)methane [Ag78(iPrPhS)30(dppm)10Cl10]4+ Cl ESI-MS 293
Ag86 2-Methylphenylacetylene Ag86(2-CH3C6H4C[triple bond, length as m-dash]C)50 ESI-MS 291
Ag88 4-tert-Butylthiacalix[4]arene Ag88(TC4A)8(EtS)32(OAc)8(CH3CN) ESI-MS 294
Ag93 4-Methoxyphenylacetylene Ag93(PPh3)6(C[triple bond, length as m-dash]CR)50 ESI-MS 295
Ag98 2-Methylphenylacetylene Ag98(2-CH3C6H4C[triple bond, length as m-dash]C)52 ESI-MS 291
Ag110 2-Fluorothiophenol, triphenylphosphine Ag110(SPhF)48(PPh3)12 MALDI-MS 296
Ag112 3,5-Trifluoromethylphenylacetylene [Ag112Cl6(3,5-(CF3)2PhC[triple bond, length as m-dash]C)51]3− ESI-MS 297
Ag123 tert-Butyl thiol [Ag123S35(StBu)50] MALDI-MS 298
Ag136 4-tert-Butylbenzenethiol [Ag136(SR)64Cl3Ag0.45] ESI-MS 299
Ag140 4-tert-Butylbenzylmercaptan Ag140BBT53 MALDI-MS 300
Ag141 Adamantanethiol [Ag141X2(S-Adm)40]3+ ESI-MS 61
Ag146 4-Isopropylbenzenethiolate Ag146Br2(SR)80 ESI-MS 32
Ag152 Phenylethanethiol Ag152(SCH2CH2Ph)60 MALDI-MS 301
Ag154 1,4-Bis-(diphenylphosphanylmethyl)benzene [Ag154Se77(Dppxy)18] MALDI-MS 302
Ag213 Adamantanethiol Ag213(Adm-S)44Cl33 ESI-MS 303
Ag280 4-tert-Butylbenzylmercaptan Ag280(SBB)120 ESI-MS 53
Ag320 1,1-Bis(diphenylphosphino)propane, tert-butyl thiol [Ag320S130(StBu)60(dppp)12] MALDI-MS 302
Ag344 tert-Butyl thiol [Ag344S124(StBu)96] MALDI-MS 298
Ag352 tert-Butyl thiol [Ag352S128(StC5H11)] MALDI-MS 302
Ag374 4-tert-Butylbenzenethiol [Ag374(SR)113Br2Cl2] ESI-MS 299
Ag490 tert-Butyl thiol [Ag490S188(StC5H11)114] MALDI-MS 302
Au5 Triphenylphosphine Au5(PPh3)5]+ ESI-MS 304
Au6 1,3-Bis(diphenylphosphino) propane [Au6(dppp)4]2+ ESI-MS 305
Au6 Polyethylene glycol, biotin Au6(S-PEG70-biotin)6 ESI-MS 306
Au7 Polyethylene glycol, biotin Au7(S-PEG70-biotin)7 ESI-MS 306
Au9 Dibenzimidazolium salt [Au9(NHC)4Br]Br2 Br ESI-MS 307
Au9 2,6-Bis(1-(diphenylphosphaneyl)ethyl)pyridine Au9(PNP)6 ESI-MS 308
Au10 Mercaptosuccinic acid Au10(MSA)6 MALDI-MS 309
Au10 tert-Butylbenzenethiol Au10(TBBT)10 MALDI-MS 310
Au10 Polyethylene glycol Au10(S-PEG12-CO2H)10 ESI-MS 306
Au10 Dibenzimidazolium salt [Au10(NHC)4Br2](O2CCF3)2 ESI-MS 307
Au10 Polyethylene glycol, biotin Au10(S-PEG70-biotin)10 ESI-MS 306
Au10 1,3-Di(2,4,6-trimethylbenzyl)benzimidazolium halide [Au10(MesCH2Bimy)6X3] ESI-MS 311
Au11 3-Mercaptopropionic acid Au11(SCH2CH2COOH)7(TOA)7 TOA+ ESI-MS 312
Au11 1,3-Bis(diphenylphosphino)propane [Au11(dppp)5]3+ ESI-MS 305
Au11 DPEphos [Au11(DPEphos)4Cl2]Cl Cl ESI-MS 313
Au11 Polyethylene glycol Au11(SPEG12-CO2H)11 ESI-MS 306
Au11 Xantphos [Au11(Xantphos)4Cl2]Cl Cl ESI-MS 313
Au11 Diphosphine [Au11(DP)4L2]+ ESI-MS 314
Au11 Triphenylphosphine (X = chloride or phenylacetylene) [Au11(PPh3)8X2]+ ESI-MS MS/MS (CID) 315
Au12 Polyethylene glycol Au12(S-PEG12-CO2H)12–14 ESI-MS 306
Au13 1,2-Bis(diphenylphosphino)ethane [Au13(dppe)5Cl2]Cl3 Cl ESI-MS 316
Au13 1,3-Bisubstituted benzimidazolium chloride [Au13(NHC)10Cl2]3+ ESI-MS 317
Au13 1,3-Disubstituted benzimidazolium chloride [Au13(NHC)5Cl2]Cl3 Cl ESI-MS 72
Au14 1,3-Bis(diphenylphosphinopropane) Au14(dppp)5I4 Cl ESI-MS 318
Au15 Glutathione Au15(SG)13 ESI-MS 54
Au15 Glutathione, cyclodextrin Au15@CD ESI-MS 319
Au15 Glutathione Au15(SG)13 ESI-MS 320
Au16 1-Adamantanethiol Au16(S-Adm)12 ESI-MS 321
Au18 Glutathione Au18(SG)14 ESI-MS 322
Au18 Glutathione, Thiol-17mer Au18(SG)13-17mer ESI-MS 323
Au18 Glutathione Au18(SG)14 ESI-MS 324
Au18 Cyclohexanethiol Au18(SC6H11)14 ESI-MS 325
Au18 2,4,6-Triisopropylbenzylmercaptan Au18S2-(STipb)12 ESI-MS 326
Au18 3-Mercaptopropionic acid Au18(SC2H4CO2H)14 MALDI-MS 327
Au19 N,N-Bis(diphenylphosphino)amine, phenylacetylene [Au19(PhC[triple bond, length as m-dash]C)9(Hdppa)3](SbF6)2 SbF6 ESI-MS 328
Au19 Phenylethanethiol Au19(SC2H4Ph)13 ESI-MS 329
Au20 4-Pyridinethanethiol Au20(4-PyET)14CN MALDI-MS 330
Au20 1-Adamantanethiol, diphenyl-2-pyridylphosphine Au20(AdmS)14(PhPy2P) ESI-MS 331
Au20 Triphenylphosphine [Au20(PPh3)4] ESI-MS 332
Au20 Tris(2-(diphenylphosphino) ethyl)phosphine [Au20(dppp3)4]Cl4 Cl ESI-MS 73
Au21 1-Adamantanethiol, tris(4-fluorophenyl)phosphine Au21(AdmS)13S(F3Ph3P) ESI-MS 331
Au21 3-Methylbenzenethiol, N,N-bis(diphenylphosphino)amine Au21(m-MBT)12(Hdppa)2 ESI-MS 333
Au22 Cysteinyl-lysyl-cysteine Au22(Lys–Cys–Lys)16 ESI-MS 334
Au22 Glutathione, porphyrin Au22[(SG)15(SAOPPTH2)2] MALDI-MS 335
Au22 1,8-Bis-(diphenylphosphino)octane Au22(L)6 ESI-MS 336
Au22 Glutathione, boric acid Au22(SG)18 MALDI-MS 337
Au22 Glutathione Au22(SG)18 ESI-MS 338
Au22 3-Ethynylthiophene, phenylacetylene, 3-ethynyltoluene, 3-ethynylanisole Au22(C[triple bond, length as m-dash]CPh)18 MALDI-MS 74
Au22 Dimethylaminobenzenethiol Au22(DMAT)15H ESI-MS 339
Au22 1,2-Bis-(diphenylphosphino)ethane, triphenylphosphine, hydride Au22H3(dppe)3(PPh3)8 ESI-MS 340
Au22 Bis(2-diphenylphosphino)ethyl ether, hydride Au22H3(dppee)7 ESI-MS Ion mobility 341
Au23 Cyclohexanethiol [Au23(SC6H11)16] MALDI-MS 342
Au23 Glutathione Au23(SG)18 MALDI-MS 343
Au23 Cyclohexanethiol [Au23(SC6H11)16] ESI-MS 344
Au23 3,3-Dimethyl-1-butyne Au23(C[triple bond, length as m-dash]CtBu)15 MALDI-MS 345
Au23 Phenylethanethiol, 4-tert-butylbenzenethiol Au23(SPhtBu)17 ESI-MS, MALDI-MS 346
Au24 Phenylethanethiol, triphenylphosphine [Au24(PPh3)10(SC2H4Ph)5X2]+ ESI-MS 347
Au24 Benzene selenol Au24(SePh)20 ESI-MS 348
Au24 Adamantanethiol Au24(SAdm)16 ESI-MS 56
Au24 Polyvinyl 2-pyrrolidone (PVP) Au24Clx (x = 0–3) MALDI-MS 349
Au25 Glutathione Au25(SG)18 ESI-MS 350
Au25 Triphenylphosphine, alkanethiol [Au25(PPh3)10(SCnH2n+1)5Cl2]2+ Cl ESI-MS 351
Au25 Hexanethiol Au25(SC6H13)18 ESI-MS 352
Au25 Glutathione Au25(SG)18 ESI-MS 353
Au25 Glutathione Au25(SG)18 ESI-MS 354
Au25 Phenylethanethiol Au25(SCH2CH2Ph)18 ESI-MS 355
Au25 Phenylethanethiol Au25(SCH2CH2Ph)18 ESI-MS 356
Au25 Glutathione Au25(SG)18 MALDI-MS 357
Au25 Phenylethanethiol Au25(SCH2CH2Ph)18 ESI-MS 358
Au25 Glutathione [Au25(SG)18 − 6H]7− ESI-MS MS/MS (CID), action spectroscopy 144
Au25 Phenylethanethiol [Au25(SCH2CH2Ph)18]- ESI-MS MS/MS (CID), ion mobility 109
Au25 Phenylethanethiol [Au25(SCH2CH2Ph)18]- MALDI-MS, FAB-MS 359 and 360
Au25 Dioctyl diselenide Au25(SeC8H17)18 ESI-MS 361
Au25 Dodecanethiol Au25(SC12H25)18 MALDI-MS 362
Au25 Ethanethiol Au25(SC2H5)18 MALDI-MS 363
Au25 para-Mercaptobenzoic acid Au25(pMBA)18 ESI-MS MS/MS (CID), MS/MS (UVPD) 117
Au25 Cysteine Au25(Cys)18 ESI-MS 364
Au25 Glutathione Au25(SG)18 MALDI-MS 365
Au25 Glutathione Au25(SG)18 ESI-MS 366
Au25 4-Mercapto-n-butoxycalix[4]arene [Au25(Calix-4S)18] ESI-MS 367
Au25 Butanethiol Au25(BT)18 MALDI-MS 368
Au25 6-Mercaptohexanoic acid Au25(MHA)18 ESI-MS 369
Au25 2-Methacryloyloxyethyl, phosphorylcholine Au25(MPC)18 ESI-MS 370
Au25 4-tert-Butylbenzyl mercaptan Au25(SBB)18 ESI-MS, MALDI-MS 371
Au25 Phenylethanethiol [Au25(PET)18(O2)n] ESI-MS 372
Au25 (R)-5,5′,6,6′,7,7′,8,8′-Octafluoro-[1,1′-binaphthalene]-2,2′-dithiol Au25(R-BINAS)18 MALDI-MS 373
Au25 2-Phenylethanethiol, triphenylphosphine Au25(PPh3)10(SC2H4Ph)5Cl2 Cl ESI-MS MS/MS (UVPD) 121
Au25 (1R,1′R)-6,6′-(1,4-Phenylene)di-1,1′-binaphthyl-2,2′-dithiol Au25(PET)14(BINAS)2 MALDI-MS 374
Au25 4-Mercaptobenzoic acid, arginylglycylaspartic acid Au25(pMBA)18−x(cRGD)x ESI-MS 375
Au25 Diphenyl-2-pyridylphosphine, N,N-diethyldithiocarbamate Au25(DETC)5(DPPY)10Cl2 Cl ESI-MS 376
Au25 Cysteine Au25(Cys)18 ESI-MS 377
Au25 4-Mercaptobenzoic acid, Thiol-17mer Au25(pMBA)(18−n)17mer(n) ESI-MS 323
Au26 1,3-Diisopropylimidazole, N,N′-di(3,4-dimethyl-phenyl)formamidine Au26(3,4-Me2-Phform)9(iPr2-imy)3(Me2S) ESI-MS 378
Au28 Glutathione Au28(SG)14 ESI-MS 379
Au28 Glutathione Au28(SG)14 MALDI-MS 53
Au28 4-Methylbenzenethiol, N,N-bis(diphenylphosphino)amine Au28(p-MBT)14(Hdppa)3 ESI-MS 333
Au28 2-Phenylpropane-1-thiol Au28(PPT)21 ESI-MS 380
Au28 4-tert-Butylphenylacetylene Au28(tBuC6H4C[triple bond, length as m-dash]C)20 ESI-MS 381
Au28 N,N′-Diphenylformamidinate [Au28(Ph-form)12](OTf)2 ESI-MS 382
Au28 9-HC[triple bond, length as m-dash]C-closo-1,2-C2B10H11, tetrahydrothiophene [Au28(C4B10H11)12(tht)8]3+ ESI-MS 383
Au28 tert-Butylbenzenethiol Au28(SCH2Ph-tBu)22 ESI-MS 384
Au29 Glutathione Au29(SG)18 ESI-MS 385
Au30 Adamantanethiol Au30(SAd)18 MALDI-MS 386
Au30 tert-Butyl thiol Au30(S-tC4H9)18 ESI-MS, MALDI-MS 387
Au30 tert-Butyl thiol Au30S(S-tC4H9)18 ESI-MS 388
Au34 Phenylacetylene, triphenylphosphine Au34(PhC[triple bond, length as m-dash]C)14(Ph3P)6 ESI-MS 389
Au36 Thiophenol Au36(SPh)23 MALDI-MS 390
Au36 4-tert-Butylbenzenethiol Au36(SPh-tBu)24 ESI-MS 391
Au36 para-Mercaptobenzoic acid Au36(pMBA)24 ESI-MS MS/MS (CID), MS/MS (UVPD) 117
Au36 Naphthalenethiol Au36(NT)24 MALDI-MS 392
Au36 4-Methylthiophenol Au36(MTP)24 ESI-MS 393
Au36 Phenylacetylene Au36(C[triple bond, length as m-dash]CPh)24 MALDI-MS 394
Au37 4-tert-Butylbenzenethiol, triphenylphosphine Au37(TBBT)21(TPP)2 ESI-MS 395
Au38 Alkanethiol Au38(SR)24 ESI-MS 396
Au38 Alkanethiol Au38(SR)24 MALDI-MS 397
Au38 Dodecanethiol Au38(SC12H25)24 ESI-MS, MALDI-MS 398
Au38 2-Phenylethanethiol Au38(SCH2CH2Ph)24 MALDI-MS 399
Au38 2-Phenylethanethiol Au38(SCH2CH2Ph)24 MALDI-MS 400
Au38 2-Phenylethanethiol Au38(SCH2CH2Ph)24 MALDI-MS 401
Au38 2-Phenylethanethiol Au38(SCH2CH2Ph)24 MALDI-MS 402
Au38 Hexanethiol Au38(SC6H13)24 MALDI-MS 403
Au38 Hexanethiol Au38(SC6H13)24 MALDI-MS 404
Au38 Dodecanethiol Au38(SC12H25)24 MALDI-MS 405
Au40 2-Phenylethanethiol Au40(SCH2CH2Ph)24 MALDI-MS 406
Au40 2-Phenylethanethiol Au40(SCH2CH2Ph)24 MALDI-MS 407
Au40 2-Phenylethanethiol Au40(SCH2CH2Ph)24 MALDI-MS 399
Au40 2-Phenylethanethiol Au40(SCH2CH2Ph)24 MALDI-MS 401
Au40 4-tert-Butylbenzenethiol, 1,2-bis(diphenylphosphine)benzene Au40(TBBT)24(dppbe) ESI-MS 408
Au41 Au41(S-Eind)12 MALDI-MS 409
Au42 4-tert-Butylbenzenelthiol Au42(PhtBu)26 ESI-MS 410
Au42 5-Trifluoropyridyl-2-amine, triphenylphosphine Au42(Ph3P)10(5-CF3-Hpa)8 ESI-MS 411
Au42 2-(Trifluoromethyl)phenylacetylene Au42(C[triple bond, length as m-dash]CC6H4-2-CF3)22 MALDI-MS 412
Au43 Phenylacetylene Au43L22 MALDI-MS 413
Au44 4-tert-Butylbenzenelthiol Au44(TBBT)28 ESI-MS 408
Au44 2,4-Dimethylbenzenethiol Au44(2,4-DMBT)26 ESI-MS 83
Au44 Phenylacetylene Au44(C[triple bond, length as m-dash]CPh)28 MALDI-MS 394
Au49 2,4-Dimethylbenzenethiol Au49(2,4-DMBT)27 ESI-MS 414
Au50 3-(Trifluoromethyl)phenylacetylene Au50(C[triple bond, length as m-dash]CC6H4-3-F)26 MALDI-MS 412
Au54 Phenylacetylene Au54(C[triple bond, length as m-dash]CPh)26 MALDI-MS 415
Au54 Phenylacetylene Au54(C[triple bond, length as m-dash]CPh)26 MALDI-MS 413
Au55 Octadecanethiol Au55(SC18)32 MALDI-MS 416
Au55 Octadecanethiol Au55(SC18)32 MALDI-MS 417
Au55 Phenylethanethiol Au55(SCH2CH2Ph)31 ESI-MS 418
Au55 4-Methylbenzenethiolate, triphenylphosphine [Au55(p-MBT)24(Ph3P)6](SbF6)3 SbF6 ESI-MS 419
Au60 Triphenylphosphine, benzeneselenol [Au60Se2(Ph3P)10(SeR)15]+ MALDI-MS 420
Au64 Cyclohexanethiol Au64(S-c-C6H11)32 ESI-MS, MALDI-MS 421
Au65 Cyclohexanethiol Au65(SCy)30 MALDI-MS 386
Au67 Hexanethiol Au67(SR)35 MALDI-MS 422
Au67 3-Mercaptopropionsulfonic acid Au67(MPSA)35 ESI-MS 423
Au68 Phenylethanethiol Au68(SCH2CH2Ph)34 MALDI-MS 424
Au75 Hexanethiol Au75(SC6H13)40 MALDI-MS 425
Au76 4-(2-Mercaptoethyl)benzoic acid Au76(4-MEBA)44 ESI-MS 426
Au78 4-tert-Butylbenzenelthiol Au78(TBBT)40 ESI-MS 427
Au82 3-Mercaptopropionsulfonic acid Au82(MPSA)44 ESI-MS 376
Au92 4-tert-Butylbenzenelthiol Au92(TBBT)44 ESI-MS 428
Au92 4-tert-Butylbenzenelthiol Au92(TBBT)44 ESI-MS 429
Au99 2,4-Difluorophenylacetylene Au99(C[triple bond, length as m-dash]CC6H3-2,4-F2)40 MALDI-MS 430
Au99 Thiophenol Au99(SPh)42 ESI-MS, MALDI-MS 431
Au100 Naphthalenethiol Au100(Napt)42 ESI-MS, MALDI-MS 432
Au102 4-Mercaptobenzoic acid Au102(pMBA)44 ESI-MS, MALDI-MS 433
Au102 4-Mercaptobenzoic acid Au102(pMBA)44 ESI-MS 434
Au102 Thiophenol Au102(SPh)44 ESI-MS, MALDI-MS 435
Au102 Isopropyl benzenethiol Au102(IPBT)44 ESI-MS, MALDI-MS 433
Au102–104 4-tert-Butylbenzenelthiol Au102–104(TBBT)44–46 ESI-MS, MALDI-MS 436
Au103 Naphthalenethiol Au103S2(S-Nap)41 ESI-MS 437
Au103–105 Phenylethanethiol Au103–105(CH2CH2Ph)45–46 ESI-MS 438
Au106 3,5-Bis(trifluoromethyl)phenylacetylene [Au106L40Cl12][HNEt3]4 ESI-MS 439
Au110 4-(Trifluoromethyl)phenylacetylene [Au110(4-CF3C6H4C[triple bond, length as m-dash]C)48] [HNEt3]2 HNEt3+ ESI-MS 440
Au110 Phenylpentyne Au110(C[triple bond, length as m-dash]CC3H6Ph)48 ESI-MS 75
Au126 4-tert-Butylbenzenethiol Au126I4(TBBT)4 ESI-MS 441
Au127 4-tert-Butylbenzenethiol Au127I4(TBBT)4 ESI-MS 441
Au130 4-Bromothiophenol Au130(SPh-Br)50 MALDI-MS 442
Au130 Dodecanethiol Au130(SC12H25)50 ESI-MS, MALDI-MS 443
Au130 2-Flurophenylacetylene Au130(C[triple bond, length as m-dash]CR)50 MALDI-MS 444
Au130 Dodecanethiol Au130(SR)50 ESI-MS 445
Au130 Phenylethanethiol Au130(SR)50 MS/MS (CID) 110
Au133 4-tert-Butylbenzenethiol Au133(TBBT)52 ESI-MS, MALDI-MS 65
Au133 4-tert-Butylbenzenethiol Au133(TBBT)52 ESI-MS 66
Au137 Dodecanethiol Au137(SC12H25)56 MALDI-MS 446
Au137 Phenylethanethiol, hexanethiol Au137(SR)56 ESI-MS 447
Au138 2,4-Dimethylbenzenethiol Au138(SR)48 ESI-MS 448
Au144–146 Butanethiol, hexanethiol, octanethiol Au144–146(SR)50–60 LDI-MS 449
Au144 2-Flurophenylacetylene Au144(2-FC6H4C[triple bond, length as m-dash]C)60 MALDI-MS 450
Au144 2-Phenylethanethiol, hexanethiol, butanethiol Au144(SR)60 ESI-MS, MALDI-MS 451
Au144 Phenylacetylene Au144(PhC[triple bond, length as m-dash]C)60 ESI-MS 452
Au145 Butanethiol, pentanethiol Au145(SR)60X (X = Br, Cl) X ESI-MS 453
Au146 4-Mercaptobenzoic acid Au146(pMBA)57 ESI-MS 454
Au156 4-(Trifluoromethyl)phenylacetylene Au156(4-CF3C6H4C[triple bond, length as m-dash]C)60 ESI-MS 455
Au187 Dodecanethiol Au187(SC12H25)68 ESI-MS, MALDI-MS 445
Au191 4-tert-Butylbenzenethiol Au191(TBBT)66 ESI-MS 456
Au246 4-Methylbenzenethiol Au246(pMBT)80 ESI-MS, MALDI-MS 457
Au329 Phenylethanethiol Au329(SCH2CH2Ph)84 ESI-MS, MALDI-MS 458
Au333 Phenylethanethiol Au333(SR)79 ESI-MS, MALDI-MS 64
Au333 Hexanethiol Au333(SR)79 MALDI-MS 459
Au∼500 Phenylethanethiol, hexanethiol Au∼500(SR)∼120 ESI-MS, MALDI-MS 94
Au∼940 Phenylethanethiol, hexanethiol Au∼940±20(SR)∼160±4 ESI-MS, MALDI-MS 95
Au∼1400 Phenylethanethiol, hexanethiol Au∼1400(SR)∼240 MALDI-MS 96
Au∼2000 Phenylethanethiol, hexanethiol Au∼2000(SR)∼290 MALDI-MS 97
Cu4 2-Mercaptobenzimidazole Cu4(C7H5N2S)4 ESI-MS IM-MS 460
Cu4 1,2-Bis(diphenylphosphino)ethane, 2-mercaptonicotinic acid [Cu4(MNA)2(DPPE)2] MS/MS (CID) 461
Cu6 2-Mercaptonicotinic acid [Cu6(MNA)6] MS/MS (CID) 461
Cu6 2-Mercaptobenzoxazole Cu6(SR)6 ESI-MS 462
Cu6 Glutathione Cu6(GS)2 MALDI-MS 463
Cu6 Triphenylphosphine, benzeneselenol [Cu6(SePh)6(PPh3)3(4,4′-bpy)] ESI-MS 464
Cu6 Dithiophosphinate Cu63-S2P(OEt)2]6 ESI-MS 465
Cu6 2-Mercaptobenzimidazole Cu6H(C7H5N2S)6 IM-MS 463
Cu6 Diphenylethylphosphine, benzenetellurol [Cu6(TePh)6(PEtPh2)5] ESI-MS 466
Cu7 4-Chlorothiophenol, triphenylphosphine Cu7L4(PPh3)3 ESI-MS 467
Cu8 4-Hydroxy-6-(trifluoromethyl) pyrimidine-2-thiol, 1,2-bis(diphenylphosphino)ethane [Cu8(TFMPT)4(DPPE)4] ESI-MS 468
Cu8 4-Aminobenzenethiol, triphenylphosphine Cu8(m-ABT)8-[P(PhPF)3]4 ESI-MS 469
Cu8 4-Methylbenzenethiol, triphenylphosphine Cu8(p-MBT)8(PPh3)4 ESI-MS 469
Cu8 4-tertButylbenzenethiol, triphenylphosphine Cu8(TBBT)8(PPh3)4 ESI-MS 469
Cu8 Triphenylphosphine [Cu8Te4(PPh3)7] ESI-MS 470
Cu11 N,N′-Di(5-trifluoromethyl-2-pyridyl)formamidinate, hydride Cu11H3(Tf-dpf)6(OAc)2 OAc ESI-MS 471
Cu11 4-Chlorothiophenol, triphenylphosphine Cu11L5(PPh3)3 ESI-MS 467
Cu12 N,N′-Di(5-trifluoromethyl-2-pyridyl)formamidinate, hydride [Cu12H3(Tfdpf)6(OAc)2] OAc ESI-MS 471
Cu12 1,8-Bis(diphenylphosphino)octane Cu12S6(dppo)4 MALDI-MS 472
Cu12 Triethylphosphine, benzenetellurol [Cu12Te3(TePh)6(PEt3)6] ESI-MS 473
Cu12 Triethylphosphine [Cu12S6(PEt3)8] ESI-MS 474
Cu14 o-9,12-Carboranedithiol [Cu14(S2C2B10H10)6] ESI-MS MS/MS (CID) 475
Cu14 1,3-Dimercaptopropane, triphenylphosphine [Cu14(DMP)6(PPh3)H] ESI-MS 476
Cu14 Isopropylthiol, triphenylphosphine [Cu14(iPrS)3(PPh3)8H10] ESI-MS 477
Cu14 Glutathione Cu14(SG)12 ESI-MS 478
Cu15 2-Phenylethanethiol, triphenylphosphine [Cu15(PPh3)6(PET)13]2+ ESI-MS 479
Cu15 2-Phenylethanethiol, triphenylphosphine [Cu15(PhCH2CH2S)13(PPh3)6][BF4]2 BF4 ESI-MS 480
Cu16 1,2-Bis-(diphenylphosphino)ethane, dimercaptomaleonitrile [Cu16(Se)6(DPPE)4(MNT)2] ESI-MS 481
Cu18 2-Phenylethanethiol, triphenylphosphine Cu18(PET)16(PPh3)4Cl Cl ESI-MS 76
Cu18 2-Phenylethanethiol, triphenylphosphine [Cu18H(PhCH2CH2S)14(PPh3)6Cl3] ESI-MS 480
Cu20 Triphenylphosphine [Cu20S10(PPh3)8] ESI-MS 474
Cu20 N,N′-Di(5-trifluoromethyl-2-pyridyl)formamidinate, hydride [Cu20H8(Tf-dpf)10]·(BF4)2 BF4 ESI-MS 482
Cu23 4-Toluenethiol, triphenylphosphine Cu23H4(SC7H7)18(PPh3)6 ESI-MS 483
Cu23 Triphenylphosphine [Cu23(PhSe)16(Ph3P)8(H)6]·BF4 BF4 ESI-MS 484
Cu25 Triphenylphosphine [Cu25H22(PPh3)12]Cl Cl ESI-MS 485
Cu26 Dimercaptomaleonitrile, 1,2-bis-(diphenylphosphino)ethane Cu26(Se)12(DPPE)6 ESI-MS 481
Cu27 Dithiocarbamate, hydride Cu27H15{S2CNnBu2}12 ESI-MS 486
Cu31 1,2-Bis(diphenylphosphino)ethane, 4-Methoxyphenylacetylene Cu31(4-MeO-PhC[triple bond, length as m-dash]C)21(dppe)3 ESI-MS 487
Cu32 2-Phenylethanethiol Cu32(PET)24H8Cl2 Cl ESI-MS 488
Cu32 Phenylethanethiol, hydride [Cu32(PET)24H8Cl2](PPh4)2 PPh4+ ESI-MS 489
Cu33 N,N′-Di(5-methyl-2-pyridinyl)formamidine, hydride Cu33H18(Medpf)12, Cu33H16(Medpf)12Cl2 ESI-MS 77
Cu32–34 Phenylethanethiol, hydride [Cu32(PET)24H8Cl2](PPh4)2 PPh4+ ESI-MS 490
Cu36 2-(2-(Diphenylphosphaneyl)-phenethyl)quinoline, 1-adamantanethiol Cu36L7(S-Adm)3(OAc) OAc ESI-MS 491
Cu38 Phenylphosphinic acid, 1-ethynyl-1-cyclohexanol Cu38(C2)4(HOchxC[triple bond, length as m-dash]C)22(PhHPO2)2(PhPO3)2(CH3OH) ESI-MS 492
Cu41 2-Fluorothiophenol, triphenylphosphine, hydride Cu41Cl2(2-F-C6H4S)12(CF3COO)6(PPh3)6H19 ESI-MS 493
Cu47 Benzene selenol, triphenylphosphine, hydride Cu47(PhSe)15(PPh3)5(CF3COO)12H12 ESI-MS 494
Cu50 4-Fluorothiophenol, triphenylphosphine, hydride Cu50(CF3COO)10(4-F-PhS)20(PPh3)6H2 ESI-MS 495
Cu50 Diphenylethylphosphine, TePh [Cu50Te17(TePh)20(PEtPh2)8] ESI-MS 466
Cu54 2-Methyl-2-propanethiol Cu54XCl12(tBuS)20(NO3)12 ESI-MS 487
Cu61 4-tert-Butylbenzenethiol Cu61(StBu)26S6Cl6H14 ESI-MS 496
Cu75 Adamantanethiol Cu75(S-Adm)32 ESI-MS 78
Cu81 4-tert-Butylbenzenethiol [Cu81(PhS)46(tBuNH2)10(H)32]3+ ESI-MS 497
Cu93 Triphenylphosphine [Cu93Se42(SeC6H4SMe)9(PPh3)18] MALDI-MS 498
Cu96 Triphenylphosphine [Cu96Se45(SeC6H4SMe)6(PPh3)18] MALDI-MS 498
Cu136 1,5-Bis-(diphenylphosphino)pentane [Cu136S56(SCH2C4H3O)24(Dpppt)10] MALDI-MS 498
Ir9 Phenylethanethiol Ir9(PET)6 MALDI-MS 82
Ir50 Phenylacetylene Ir50(PA)25 ESI-MS 499
Pd7 Ketimide Pd7(N[double bond, length as m-dash]CtBu2)6 ESI-MS 500
Pd8 Adamantanethiol, triphenylphosphine Pd8(PPh)2PPh3(S-Adm)6 ESI-MS 501
Pd21 Phenylethanethiol Pd21(SCH2CH2Ph)18 ESI-MS 79
Pd38 Phenylethanethiol Pd38(SCH2CH2Ph)21S2 ESI-MS 79
Pt6 Triphenylphosphine Pt6(PPh3)4Cl5 ESI-MS 502
Pt6 Glutathione Pt6(SG)6 ESI-MS 502
Pt8 PAMAM-OH dendrimer Pt8(C2H2O2S)8 ESI-MS 80
Pt17 Triphenylphosphine Pt17(CO)12(PPh3)8 ESI-MS, MALDI-MS 503
Pt17 Triphenylphosphine Pt17(CO)12(PPh3)8 ESI-MS Cyclic ion mobility, MS/MS (CID) 140
Pt23 2,6-Dimethylphenyl isocyanide Pt23(XylNC)20(CO)5Cl2 ESI-MS 504
Au2Ni3 Phenylethanethiol Au2Ni3(SEtPh)8 ESI-MS 505
Ag4Ni2 Dimercaptosuccinic acid Ag4Ni2(DMSA)4 ESI-MS 506
Au4Cu2 3-Mercaptopropionic acid Au4Cu2(MPA)5 ESI-MS 507
Au4Ni2 Phenylethanethiol Au4Ni2(SEtPh)8 ESI-MS 508
Au4Ni2 Phenylethanethiol Au4Ni2(SEtPh)8 Paper spray MS 509
Au4Pd2 Phenylethanethiol Au4Pd2(PET)8 ESI-MS 510
Au4Pd2 Phenylethanethiol Au4Pd2(PET)8 MALDI-MS 511
Au4Pt2 Phenylethanethiol Au4Pt2(PET)8 MALDI-MS 512
Au3Ag5 Mercaptosuccinic acid Au3Ag5(MSA)3 ESI-MS 513
Au4Cu4 1,1-Bis(diphenylphosphino)methane, adamantanethiol [Au4Cu4(Dppm)2(SAdm)5]Br Br ESI-MS 514
Au6Ag2 2-(Diphenylphosphino)-5-pyridinecarboxaldehyde [Au6Ag2(C)(L1)6](BF4)4 BF4 ESI-MS 515
Au4Ag5 1,1-Bis(diphenylphosphino)methane, adamantanethiol [Au4Ag5(dppm)2(SAdm)6]+ ESI-MS 516
Au4Cu5 1,1-Bis(diphenylphosphino)methane, cyclohexanethiol [Au4Cu5(C6H11S)6(dppm)2](BPh4) BPh4 ESI-MS 514
PdAu8 Triphenylphosphine PdAu8(PPh3)8 ESI-MS Ion mobility 517
PdAu9 Triphenylphosphine PdAu9(PPh3)8(CN) CN ESI-MS 518
PtAg9 Tris(4-fluorophenyl)phosphine PtAg9[P(Ph–F)3]7Cl3 Cl ESI-MS 519
Au8Ag3 Triphenylphosphine Au8Ag3(PPh3)7Cl3 Cl ESI-MS 520
AuCu11 Phenylacetylene, diisopropyldithiophosphate AuCu11(H){S2P(OiPr)2}6(C[triple bond, length as m-dash]CPh)3 ESI-MS 521
Ag7Au6 Mercaptosuccinic acid Ag7Au6(H2MSA) ESI-MS 522
PtAg12 2,4-Bimethylbenzenethiol, 1,1-bis(diphenylphosphino) methane PtAg12(dppm)5(SPhMe2)2 ESI-MS 523
Au9M4 (M = Ag, Cu) Diphenylmethylphosphine [Au9M4Cl4(PMePh2)8][C2B9H12]·CH2Cl2 ESI-MS 524
CoAu12 1,1-Bis(diphenylphosphino)methane CoAu12(dppm)6 ESI-MS 525
Ag14−xCux Fluorothiophenol Ag14−xCux(SPhF5)12(P(Ph-m-OMe)3)4 ESI-MS 526
PdAg13 Diisopropyldithiophosphate Pd(H)Ag13(S){S2P(OiPr)2}10 ESI-MS 527
Ag14M (M = Pd/Pt) 1,3-Bis(diphenylphosphino)propane ([M1Ag14(DPPP)6Cl4](OTf)2 OTf ESI-MS 528
Au7Ag8 1,10-Bis-(diphenylphosphino)ferrocene, proline Au7Ag8(dppf)3(L-/D-proline)6 ESI-MS 529
CdAu14 tert-Butylthiol CdAu14(StBu)12 ESI-MS 321
Au7Ag9 1,1′-Bis(diphenylphosphino)ferrocene [Au7Ag9(dppf)3(CF3CO2)7BF4]n BF4 ESI-MS 530
Ag13Cu4 m-Carborane-1,7-dithiol Ag13Cu4(CBDT)12 ESI-MS 531
AuAg12Cu4 o-Carboranethiol AuAg12Cu4(o1-CBT)12 ESI-MS 238
Au7Cu10 Adamantanethiol, disphenyl-2-pyridylphosphine Au7Cu10(1-Adm)3(PPh2Py)6Cl3 ESI-MS 532
Au13Cu4 4-Mercaptobenzoic acid Au13Cu4(pMBA)12 ESI-MS 533
Au16Ag Adamantanethiol [Au16Ag(S-Adm)13] ESI-MS 534
Pt2Ag15 Adamantanethiol, bis(2-diphenyphosphinophenyl)ether Pt2Ag15(SAdm)4(DPPOE)4H ESI-MS 535
Au15Ag3 2,4-Dimethylbenzenethiol Au15Ag3(SPhMe2)14 ESI-MS 536
Au17M2 (M = Pd, Pt) Diethylphenylphosphine M2Au17(depp)10Cl7 ESI-MS 537
AuAg19[Editor37]  O,O-Diisopropyl dithiophosphate [AuAg19{S2P(OnPr)2}12] ESI-MS 538
Au18Cd2 4-Methylbenzenethiol, triphenylphosphine Au18Cd2(p-MBT)14(PPh3)2 ESI-MS 539
Cu3Ag17 Diisopropyldithiophosphate Cu3Ag17{S2P(OnPr)2}12 ESI-MS 540
Au9Ag12 1,1-Bis(diphenylphosphino)methane, adamantanethiol, 4-tert-butylmercaptan [Au9Ag12(SR)4(dppm)6X6]3+ ESI-MS 541
Au21−xAgx tert-Butylthiol Au21−xAgx(SR)15 (x = 4–8) ESI-MS 542
Au21−xCux tert-Butylthiol Au21−xCux(SR)15 (x = 0–5) ESI-MS 542
Au16Cu6 tert-Butylphenylacetylene Au16Cu6(tBuPhC[triple bond, length as m-dash]C)18 ESI-MS 543
Au19Cd3 3,5-Dimethylbenzenethiol Au19Cd3(3,5-DMBT)18 ESI-MS 544
Au22−xCux tert-Butylphenylacetylene Au22−xCux(tBuC6H4C[triple bond, length as m-dash]C)18 ESI-MS 545
AuAg22 Adamantanethiol [AuAg22(S-Adm)12]3+ ESI-MS 546
Au23−xAgx Adamantanethiol Au23−xAgx(S-Adm)16 MALDI-MS 547
Au24−xAgx tert-Butylbenzylmercaptan Au24−xAgx(TBBM)20 ESI-MS 548
Au25−XAgx Phenylethanethiol [Au25−XAgx(PET)18] ESI-MS 549
Ag5Au20 Captopril Ag5Au20(Capt)18 ESI-MS 550
Ag6Au19 Triphenylphosphine [Ag6Au19(MeOPhS)17(PPh3)6]2+ ESI-MS 551
Ag13Au12 Triphenylphosphine, phenylethanethiol [Ag13Au12(PPh3)10(SR)5Cl2]2+ ESI-MS 552
Ag23Pd2 Triphenylphosphine [Ag23Pd2(PPh3)10Cl7] ESI-MS 553
Ag23Pt2 Triphenylphosphine [Pt2Ag23Cl7(PPh3)10] ESI-MS 554
Ag24Au 1,1-Bis(diphenylphosphino)methane [AuAg24(dppm)3(SR)17]2+ ESI-MS 555
Ag24Au 6-Mercaptohexanoic acid AuAg24(MHA)18 ESI-MS 556
Ag24Au 2,4-Dimethylbenzenethiol [Ag24Au(DMBT)18]- ESI-MS 87
Ag24M (M = Pd/Pt) 2,4-Dichlorobenzenethiol [Ag24M(SR)18](PPh4)2 PPh4 ESI-MS 557
Ag24M (M = Pt) 2,4-Dimethylbenzenethiol [Ag24Pt(DMBT)18]- ESI-MS MS/MS (UVPD) 120
Au24M (M = Cd/Hg) Phenylethanethiol Au24M(SC2H4Ph)18 ESI-MS, MALDI-MS 86
Au24Pd 3,5-Bis(trifluoromethyl)phenylacetylene PdAu24(PA)18 ESI-MS 558
Au24Pd 2-Phenylethanethiol [Au24Pd(PET)18] ESI-MS 559
Au24Pt tert-Butylbenzenethiol, thiodithiol [Au24Pt(TBBT)12(TDT)3] ESI-MS 560
Au24Pt 2-Phenylethanethiol [Au24Pt(PET)18] MALDI-MS 561
Au24Pt Alkanethiol [Au24Pt(SCn)18] ESI-MS Mass selected PES 207
Au24M (M = Pt, Pd) 3,5-Bis(trifluoromethyl)phenylacetylene [MAu24(C[triple bond, length as m-dash]CR)18]2− ESI-MS MS/MS (CID) 562
Au24−xAgxM1 (M = Cd/Hg) Phenylethanethiol AgxAu24−xM1(SR)18 ESI-MS 563
Au24−xyAgxCuyPd 1-Dodecanethiol Au24−xyAgxCuyPd(SC12H25)18 MALDI-MS 564
Au25−xCux 2-Phenylethanethiol [Au25−xCux(PET)18] MALDI-MS 565
Ag18Cu8 tert-Butylphenylacetylene, 1,3-bis(diphenylphosphino)propane Ag18Cu8(dppp)4(tBu-C6H4C[triple bond, length as m-dash]C)22 ESI-MS 566
Au24Cd2 1-Adamantanethiol, 1,3-bis(diphenylphosphino)propane Au24Cd2(SAdm)12(dppp)2Cl2 Cl ESI-MS 567
Au25Cd 4-Methylbenzenethiol, triphenylphosphine Au25Cd(p-MBT)17(PPh3)2 ESI-MS 539
Ag2Au25 Phenylethanethiol Ag2Au25(SR)18 MALDI-MS 568
Ag15Cu12 Cyclohexanethiol Ag15Cu12(S-c-C6H11)18(CH3COO)3 ESI-MS 569
Au4Ag23 1,1′-Bis(diphenylphosphino)ferrocene, tert-butylalkynyl [Au4Ag23(tBuC[triple bond, length as m-dash]C)10Cl7(dppf)4]2+ ESI-MS 570
Au26Pd 2-Phenylethanethiol Au26Pd(SPhtBu)20 ESI-MS 346
Au27Cd 1,1′-Bis(diphenylphosphino)ferrocene, adamantanethiol Au27Cd(SAdm)14(DPPF)Cl Cl ESI-MS, MALDI-MS 84
Ag16Au13 3-Bromoprop-1-yne, hydroxybenzonitrile [Au13Ag16(C10H6NO)24]3− ESI-MS 571
Ag17Au12 1,3-Benzenedithiol, triphenylphosphine Au12Ag17(BDT)12(PPh3)4 ESI-MS 572
Ag17Cu12 1,3-Benznedithiol, triphenylphosphine Ag17Cu12(SR)12(PPh3)4 ESI-MS 573
Ag25Cu4 1,4-Bis(diphenylphosphine)butane, phenylacetylene Ag25Cu4Cl6(dppb)6(PhC[triple bond, length as m-dash]C)12 ESI-MS 574
Ag25Cu4 Phenylacetylene, triphenylphosphine [Ag25Cu4H8Br6(C[triple bond, length as m-dash]CPh)12(PPh3)12]3+ ESI-MS 575
Ag28Hg 1,3-Benzenedithiol Ag28Hg(BDT)12 ESI-MS 576
MAg28 (M = Ni, Pd) 1,3-Benznedithiol, triphenylphosphine MAg28(BDT)12(PPh3)4 ESI-MS 572
Ag28−XAuxM (M = Ni/Pd/Pt) 1,3-Benzenedithiol, triphenylphosphine MAuxAg28−X(BDT)12(PPh3)4 MALDI-MS 577
PtAg12Cu12Au4 Adamantanethiol, triphenylphosphine PtAg12Cu12Au4(S-Adm)18(PPh3)4 ESI-MS 85
Au24Cu6 4-tert-Butylbenzenethiol Au24Cu6(TBBT)22 ESI-MS 578
Cu28Ag4 Phenylethanethiol, triphenylphosphine [Ag4Cu28H6(PET)16-Cl8(PPh3)8] ESI-MS 579
Ag20Cu12 2,4-Dimethylbenzenethiol, 1,1-bis(diphenylphosphino) methane [Ag20Cu12(SR)14(dppm)6Br8]2+ ESI-MS 580
Cu20Ag13 Phenylethanethiol, triphenylphosphine Ag13Cu20(PPh3)4(PET)24] ESI-MS 581
Au25Cu8 Adamantanethiol, triphenylphosphine Au25Cu8(S-Adm)19(PPh3)5 MALDI-MS 582
Ag22Cu12 3,5-Bis(trifluoromethyl)phenylacetylene Ag22Cu12(C[triple bond, length as m-dash]CR)28 ESI-MS 583
Au34Rh Polyvinyl-2-pyrrolidone (PVP) Au34RhCl MALDI-MS 584
Au36−xAgx tert-Butylbenzenethiol Au36−xAgx(SPh-tBu)24 ESI-MS 585
Au38−xAgx 2-Phenylethanethiol AgxAu38−x(SR)24 MALDI-MS 586
Au36Pd2 2-Phenylethanethiol Au36Pd2(SC2H4Ph)24 MALDI-MS 400
Ag28Cu12 2,4-Dichlorobenzenethiol [Ag28Cu12(SR)24]4− ESI-MS 587
Ag32Au12 Fluorobenzenethiol [Ag32Au12(SR)30]4− ESI-MS 588
Ag32Cd12 Benzene selenol [Ag32Cd12(SePh)36] MALDI-MS 589
Ag32Cu12 Tris(4-methoxyphenyl)phosphine, adamantanethiol [Ag32Cu12(CH3COO)12(SAdm)12(P(CH3OPh)3)4] ESI-MS 590
Ag44−xAux Fluorothiophenol Ag44−xAux(FTP)26 ESI-MS MS/MS (CID) 591
Au24+xAg20−x 4-tert-Butylbenzenethiol Au24+xAg20−x(SPhtBu)26 ESI-MS 592
Au44−xAgx 4-Trifluoromethylthiophenol Au44−xAgx(SR)30 ESI-MS 593
Au41Cd6 Phenylmethanethiol Au41Cd6S2(SCH2Ph)33 ESI-MS 594
Cu47−xAgx Benzene selenol, triphenylphosphine [(CuAg)47(PhSe)18(PPh3)6(CF3COO)12H6] ESI-MS 494
Au19Cu30 3-Ethynylthiophene, ethynylbenzene [Au19Cu30(C[triple bond, length as m-dash]CR)22(Ph3P)6Cl2] ESI-MS 595
Ag20Au12Cu Pentafluorobenzenethiol Au12Ag20Cu18(PFBT)36 ESI-MS 596
Ag50−xAux tert-Butylbenzylmercaptan, 1,1-bis(diphenylphosphino)methane AuxAg50−x(dppm)6(SR)30 ESI-MS 282
Au12Ag20Cu18 Pentafluorobenzenethiol Au12Ag20Cu18(PFBT)36 ESI-MS 596
Cu32Au18 4-Methoxythiophenol [Au18Cu32(SR–O)36] ESI-MS 597
Ag53−xM 2,4-Dimethylbenzenethiol, 1,3-benzenedithiol MAg53−x(BDT)12(DMBT)18−y ESI-MS MS/MS (CID) 107
Ag42Cu12 3,5-Bis(trifluoromethyl)phenylacetylene Ag42Cu12(C[triple bond, length as m-dash]CR)36 ESI-MS 583
Cu56Au Adamantanethiol [AuCu56S12(SAdm)20(O3SAdm)12] MALDI-MS 598
Ag43Au16 2,4-Dichlorobenzenethiol [Au16Ag43H12(SPhCl2)34]5− ESI-MS 599
Au34Ag28 Phenylacetylene Au34Ag28(PhC[triple bond, length as m-dash]C)34 ESI-MS 600
Au43Ag38 Dodecanethiol Au43Ag38(C12H13)36Cl ESI-MS 601
Au57Ag53 Phenylacetylene [Au57Ag53(PhC[triple bond, length as m-dash]C)40Br12] MALDI-MS 602
Au80Ag30 Phenylacetylene [Au80Ag30(PhC[triple bond, length as m-dash]C)42Cl9]Cl MALDI-MS 603
Au52Cu72 4-Methylthiophenol Au52Cu72(SPh)55 ESI-MS 604
Au130−xAgx 4-tert-Butylbenzenethiol Au130−xAgx(SR)55 MALDI-MS 605
Au74Ag60 Phenylacetylene [Au74Ag60(PhC[triple bond, length as m-dash]C)40Br12] MALDI-MS 606
Au137−xMx (M = Ag, Pd) 2-Phenylethanethiol Au137−xMx(SR)60 ESI-MS 447
Au78Ag66 Phenylacetylene [Au78Ag66(PhC[triple bond, length as m-dash]C)48Cl8] MALDI-MS 606
Au144−xAgx 2-Phenylethanethiol Au144−xAgx(SR)60 ESI-MS, MALDI-MS 607
Au144−xCux 2-Phenylethanethiol Au144−xAgx(SR)60 ESI-MS, MALDI-MS 608
Au144−xAgx Hexanethiol Au144−xCux(SR)60 ESI-MS, MALDI-MS 609
Au144−xPdx 2-Phenylethanethiol Au144−xPdx(SR)60 ESI-MS, MALDI-MS 610
Au329−xAgx 2-Phenylethanethiol Au329−xAgx(SR)84 ESI-MS, MALDI-MS 611


Recent advancements in instrumentation have greatly expanded the scope of mass spectrometry. Charge detection MS methods now allow the measurement of charge and mass-to-charge ratio of single ions, facilitating the study of bigger systems such as protein assemblies, viral particles, and nanoparticles, which was previously not possible. Mass photometry, a non-destructive and label-free method for measuring molecular mass in solution, has also emerged as a powerful approach to investigate molecular interactions, including protein and nanocluster binding and aggregation, with high accuracy at the level of single entities. Nano-electro-mechanical sensor-based MS (NEMS-MS), which directly measures the inertial mass of particles without relying on charge states, represents a powerful emerging approach for materials research. Its nanoscale dimensions provide exceptional miniaturisation potential, making it attractive for the characterisation of nanoclusters and heterogeneous materials at the single-particle level.21

While this review focused on characterizing ions, they can also serve as precursors for creating materials that lead to various applications. The examples presented in Section 7 also point to an “ionic path” for cluster-based materials. The application of mass spectrometry has tremendously expanded from mass analysis to materials processing. Soft ionisation and deposition methods such as electrospray ionisation, electrospray deposition, and soft landing make it possible to transfer intact molecular ions or clusters onto substrates under gentle conditions. These techniques enable the assembly of thin films and nanostructures with controlled properties, which can be useful in sensing, catalysis, and nanoelectronics. Given that these methods operate under mild and tunable conditions, they are particularly suitable for preserving fragile systems during their synthesis and characterisation. The electrospray-deposited clusters and cluster superstructures could be characterised using cryogenic electron microscopy (cryo-EM) and microcrystal electron diffraction (microED). These advances could integrate MS with structural techniques, opening a new dimension in this area.

The progress in ion activation and spectroscopic methods has further improved the structural analysis of nanoclusters. Advanced techniques such as ion mobility spectrometry, tandem mass spectrometry, and ultraviolet photodissociation allow the elucidation of isomeric structures, dissociation pathways, and core–shell structure arrangements. Advancements in multidimensional MS, particularly two-dimensional tandem MS, enable the rapid and high-throughput screening of complex mixtures, and these inputs can be extended to other systems to accelerate the discovery and optimisation of nanoclusters, alloys, and hybrid materials.202 Laser-based action spectroscopy,203 when used along with ion mobility, enables the study of excited states and weak intermolecular interactions. Recent developments, such as cyclic ion mobility, allow recirculation of ions for enhanced resolution, making it possible to distinguish nearly identical species.204

Future developments in this field lie in the integration of mass spectrometry with other complementary characterisation techniques. Approaches that combine MS with electron microscopy,205 infrared, Raman,206 UV–vis and photoelectron spectroscopy,207etc. could derive correlations among composition, morphology, structure, and electronic properties. These multifaceted approaches could unveil the relationship between structure and functions in nanoscale materials. Ultrahigh-resolution mass spectrometry imaging, widely applied for mapping biomolecules in biological samples,208,209 can be extended to materials research to probe the dopants, interfaces, and nanoscale defects in heterogeneous solids with molecular precision. Native-state approaches, such as matrix-landing MS,210 expand the scope of intact nanoclusters or supramolecular assemblies to be transferred directly from the gas phase onto surfaces for electron microscopy imaging or device integration.

In parallel, theoretical and computational approaches are also advancing rapidly. Machine-learned interatomic potentials, such as the Atomic Cluster Expansion (ACE) model developed by McCandler et al., are enabling long-timescale molecular dynamics simulations with near-DFT (density functional theory) accuracy and much greater efficiency. These models offer valuable insights into ligand exchange, reactive isomerism, and structural rearrangements in nanoclusters, which align with experimental observations. A growing direction in this field is the integration of mass spectrometry with theoretical modelling, where MS data are combined with DFT and other computational methods to predict stable geometries, electronic structures, and fragmentation pathways. The combination of experiment and simulation could provide a better understanding of the gas-phase chemistry and aggregation-induced properties of nanoclusters.211 Finally, incorporating MS into closed-loop smart synthesis frameworks driven by artificial intelligence and automation, will enable real-time feedback between synthesis and property assessment, thereby accelerating the rational design of materials with tailored catalytic, optical, and electronic properties.212 The integration of real-time MS analysis with computational modelling and machine learning will enable the design of clusters with targeted composition, stability, and functionality, transforming MS into a predictive tool for materials discovery.

To conclude, the scope of mass spectrometry has significantly expanded from an analytical tool. Currently, it occupies a central position across various disciplines, including materials science, nanotechnology, and biochemistry. With its broad capabilities, ranging from synthesis and soft landing to high-resolution structural studies and integration with computation, it redefines the design and investigation of materials at the atomic scale. Continued advancements in the field of mass spectrometry will establish it as a foundational tool for developing next-generation functional nanomaterials.

Author contributions

T. P. conceived the idea and initiated the project. A. J. drafted the manuscript and prepared the figures. B. S. S. compiled the list of clusters. All authors reviewed and approved the final version of the manuscript.

Conflicts of interest

There are no conflicts to declare.

Data availability

All the data supporting this review article have been included in the main article itself.

Acknowledgements

A. J. acknowledges the MHRD for the PMRF grant. B. S. S. thanks the Council of Scientific & Industrial Research (CSIR) for the Shyama Prasad Mukherjee (SPM) research fellowship. T. P. thanks the SERB, India, for funding through the research grant, SPR/2021/000439, and through the JC Bose Fellowship. T. P. also acknowledges funding from the Centre of Excellence (CoE) on Molecular Materials and Functions through the Institute of Eminence Scheme, IIT Madras.

References

  1. J. B. Fenn, Angew. Chem., Int. Ed., 2003, 42, 3871–3894 CrossRef CAS PubMed.
  2. J. M. Thomas, Angew. Chem., Int. Ed., 2006, 45, 6797–6800 CrossRef CAS.
  3. J. J. Thomson, London, Edinburgh Dublin Philos. Mag. J. Sci., 1912, 23, 449–457 CrossRef CAS.
  4. F. W. Aston, Isotopes, Edward Arnold & Company, London, 1922, p. 252 Search PubMed.
  5. F. W. McLafferty, Annu. Rev. Anal. Chem., 2011, 4, 1–22 CrossRef CAS PubMed.
  6. R. S. Gohlke, Anal. Chem., 1959, 31, 535–541 CrossRef CAS.
  7. R. S. Gohlke and F. W. McLafferty, J. Am. Soc. Mass Spectrom., 1993, 4, 367–371 CrossRef CAS PubMed.
  8. F. W. Mclafferty, P. J. Todd, D. C. Mcgilvery and M. A. Baldwin, J. Am. Chem. Soc., 1980, 102, 3360–3363 CrossRef CAS.
  9. J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong and C. M. Whitehouse, Science, 1989, 246, 64–71 CrossRef CAS PubMed.
  10. M. Karas, D. Bachmann, U. Bahr and F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes, 1987, 78, 53–68 CrossRef CAS.
  11. K. Tanaka, H. Waki, Y. Ido, S. Akita, Y. Yoshida, T. Yoshida and T. Matsuo, Rapid Commun. Mass Spectrom., 1988, 2, 151–153 CrossRef CAS.
  12. R. J. Wenzel, U. Matter, L. Schultheis and R. Zenobi, Anal. Chem., 2005, 77, 4329–4337 CrossRef CAS PubMed.
  13. K. Tanaka, Angew. Chem., Int. Ed., 2003, 42, 3860–3870 CrossRef PubMed.
  14. X. Kang and M. Zhu, Chem. Soc. Rev., 2019, 48, 2422–2457 RSC.
  15. I. Chakraborty and T. Pradeep, Chem. Rev., 2017, 117, 8208–8271 CrossRef CAS PubMed.
  16. R. Jin, C. Zeng, M. Zhou and Y. Chen, Chem. Rev., 2016, 116, 10346–10413 CrossRef CAS PubMed.
  17. K. S. Sugi, A. P. Sandra, N. Nonappa, D. Ghosh, J. S. Mohanty, M. Paulthangam Kannan, B. S. Sooraj, P. Srikrishnarka, J. Roy, W. A. Dar and T. Pradeep, Nanoscale, 2023, 15, 11927–11934 RSC.
  18. T. Pradeep, Atomically precise metal clusters, Elsevier, 1st edn, 2023 Search PubMed.
  19. A. Pihlajamäki, S. Malola and H. Häkkinen, ChemRxiv, 2024.
  20. B. H. Kim, M. J. Hackett, J. Park and T. Hyeon, Chem. Mater., 2014, 26, 59–71 CrossRef CAS.
  21. S.-H. Lai, S. Maclot, R. Antoine and C. D. Masselon, Mass Spectrom. Rev., 2025, 44, 850–869 CrossRef CAS.
  22. R. D. Smith, J. Am. Soc. Mass Spectrom., 2023, 34, 803–812 CrossRef CAS.
  23. R. Chen, X. Cheng, D. W. Mitchell, S. A. Hofstadler, Q. Wu, A. L. Rockwood, M. G. Sherman and R. D. Smith, Anal. Chem., 1995, 67, 1159–1163 CrossRef CAS.
  24. A. Makarov, Anal. Chem., 2000, 72, 1156–1162 CrossRef CAS PubMed.
  25. R. A. Zubarev and A. Makarov, Anal. Chem., 2013, 85, 5288–5296 CrossRef CAS PubMed.
  26. U. Bahr, U. Röhling, C. Lautz, K. Strupat, M. Schürenberg and F. Hillenkamp, Int. J. Mass Spectrom. Ion Processes, 1996, 153, 9–21 CrossRef CAS.
  27. H. C. Chang, Annu. Rev. Anal. Chem., 2009, 2, 169–185 CrossRef CAS PubMed.
  28. M. F. Jarrold, Chem. Rev., 2022, 122, 7415–7441 CrossRef CAS PubMed.
  29. T. P. Wörner, J. Snijder, A. Bennett, M. Agbandje-McKenna, A. A. Makarov and A. J. R. Heck, Nat. Methods, 2020, 17, 395–398 CrossRef.
  30. G. Young, N. Hundt, D. Cole, A. Fineberg, J. Andrecka, A. Tyler, A. Olerinyova, A. Ansari, E. G. Marklund, M. P. Collier, S. A. Chandler, O. Tkachenko, J. Allen, M. Crispin, N. Billington, Y. Takagi, J. R. Sellers, C. Eichmann, P. Selenko, L. Frey, R. Riek, M. R. Galpin, W. B. Struwe, J. L. P. Benesch and P. Kukura, Science, 2018, 360, 423–427 CrossRef CAS PubMed.
  31. N. A. Sakthivel, S. Theivendran, V. Ganeshraj, A. G. Oliver and A. Dass, J. Am. Chem. Soc., 2017, 139, 15450–15459 CrossRef CAS PubMed.
  32. Y. Song, K. Lambright, M. Zhou, K. Kirschbaum, J. Xiang, A. Xia, M. Zhu and R. Jin, ACS Nano, 2018, 12, 9318–9325 CrossRef CAS.
  33. J. Roy, I. Marathe, V. Wysocki and T. Pradeep, Chem. Commun., 2024, 60, 6655–6658 RSC.
  34. T. Chen, Q. Yao, R. R. Nasaruddin and J. Xie, Angew. Chem., 2019, 131, 12093–12103 CrossRef.
  35. Y. Lu and W. Chen, Anal. Chem., 2015, 87, 10659–10667 CrossRef CAS.
  36. C. Comby-Zerbino, X. Dagany, F. Chirot, P. Dugourd, R. Antoine and R. Antoine, Mater. Adv., 2021, 2, 4896–4913 RSC.
  37. P. Chakraborty and T. Pradeep, NPG Asia Mater., 2019, 11, 48 CrossRef.
  38. K. M. Harkness, D. E. Cliffel and J. A. McLean, Analyst, 2010, 135, 868–874 RSC.
  39. A. Baksi, P. Chakraborty, A. Nag, D. Ghosh, S. Bhat and T. Pradeep, Anal. Chem., 2018, 90, 11351–11357 CrossRef CAS.
  40. A. Baksi, A. Ghosh, S. K. Mudedla, P. Chakraborty, S. Bhat, B. Mondal, K. R. Krishnadas, V. Subramanian and T. Pradeep, J. Phys. Chem. C, 2017, 121, 13421–13427 CrossRef CAS.
  41. E. Ito, S. Ito, S. Takano, T. Nakamura and T. Tsukuda, AuJACS, 2022, 2, 2627–2634 CAS.
  42. D. Hwang, H. Lee, S. Y. Jang, S. M. Jo, D. Kim, Y. Seo and D. Y. Kim, ACS Appl. Mater. Interfaces, 2011, 3, 2719–2725 CrossRef CAS PubMed.
  43. D. Sarkar, A. Mahapatra, A. Som, R. Kumar, A. Nagar, A. Baidya and T. Pradeep, Adv. Mater. Interfaces, 2018, 5, 1800667 CrossRef.
  44. M. Broyer, Phys. Scr., T, 1989, 26, 84–89 CrossRef.
  45. W. D. Knight, K. Clemenger, W. A. De Heer, W. A. Saunders, M. Y. Chou and M. L. Cohen, Phys. Rev. Lett., 1984, 52, 2141–2143 CrossRef CAS.
  46. H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl and R. E. Smalley, Nature, 1985, 318, 162–163 CrossRef CAS.
  47. E. A. Rohlfing, D. M. Cox and A. Kaldor, J. Chem. Phys., 1984, 81, 3322–3330 CrossRef CAS.
  48. L. A. Bloomfield, M. E. Geusic, R. R. Freeman and W. L. Brown, Chem. Phys. Lett., 1985, 121, 33–37 CrossRef CAS.
  49. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, J. Chem. Soc., Chem. Commun., 1994, 7, 801–802 RSC.
  50. R. L. Whetten, J. T. Khoury, M. M. Alvarez, S. Murthy, I. Vezmar, Z. L. Wang, P. W. Stephens, C. L. Cleveland, W. D. Luedtke and U. Landman, Adv. Mater., 1996, 8, 428–433 CrossRef CAS.
  51. A. C. Templeton, W. P. Wuelfing and R. W. Murray, Acc. Chem. Res., 2000, 33, 27–36 CrossRef CAS PubMed.
  52. J. F. Hicks, A. C. Templeton, S. Chen, K. M. Sheran, R. Jasti, R. W. Murray, J. Debord and T. G. Schaaff, Anal. Chem., 1999, 71, 3703–3711 CrossRef CAS.
  53. T. Gregory Schaaff, G. Knight, M. N. Shafigullin, R. F. Borkman and R. L. Whetten, J. Phys. Chem. B, 1998, 102, 10645–10646 Search PubMed.
  54. Y. Negishi, K. Nobusada and T. Tsukuda, J. Am. Chem. Soc., 2005, 127, 5261–5270 CrossRef CAS.
  55. N. K. Chaki, Y. Negishi, H. Tsunoyama, Y. Shichibu and T. Tsukuda, J. Am. Chem. Soc., 2008, 130, 8608–8610 CrossRef CAS PubMed.
  56. D. Crasto, G. Barcaro, M. Stener, L. Sementa, A. Fortunelli and A. Dass, J. Am. Chem. Soc., 2014, 136, 14933–14940 CrossRef CAS PubMed.
  57. M. W. Heaven, A. Dass, P. S. White, K. M. Holt and R. W. Murray, J. Am. Chem. Soc., 2008, 130, 3754–3755 CrossRef CAS PubMed.
  58. M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz and R. Jin, J. Am. Chem. Soc., 2008, 130, 5883–5885 CrossRef CAS PubMed.
  59. Z. Gan, N. Xia, N. Yan, S. Zhuang, J. Dong, Y. Zhao, S. Jiang, Q. Tao and Z. Wu, Angew. Chem., Int. Ed., 2021, 60, 12253–12257 CrossRef CAS.
  60. C. P. Joshi, M. S. Bootharaju, M. J. Alhilaly and O. M. Bakr, J. Am. Chem. Soc., 2015, 137, 11578–11581 CrossRef CAS PubMed.
  61. L. Ren, P. Yuan, H. Su, S. Malola, S. Lin, Z. Tang, B. K. Teo, H. Häkkinen, L. Zheng and N. Zheng, J. Am. Chem. Soc., 2017, 139, 13288–13291 CrossRef CAS PubMed.
  62. M. J. Alhilaly, M. S. Bootharaju, C. P. Joshi, T. M. Besong, A. H. Emwas, R. Juarez-Mosqueda, S. Kaappa, S. Malola, K. Adil, A. Shkurenko, H. Häkkinen, M. Eddaoudi and O. M. Bakr, J. Am. Chem. Soc., 2016, 138, 14727–14732 CrossRef CAS PubMed.
  63. Z. Gan, J. Chen, J. Wang, C. Wang, M. B. Li, C. Yao, S. Zhuang, A. Xu, L. Li and Z. Wu, Nat. Commun., 2017, 8, 14739 CrossRef CAS.
  64. H. Qian, Y. Zhu and R. Jin, Proc. Natl. Acad. Sci. U. S. A., 2012, 109, 696–700 CrossRef CAS.
  65. A. Dass, S. Theivendran, P. R. Nimmala, C. Kumara, V. R. Jupally, A. Fortunelli, L. Sementa, G. Barcaro, X. Zuo and B. C. Noll, J. Am. Chem. Soc., 2015, 137, 4610–4613 CrossRef CAS PubMed.
  66. C. Zeng, Y. Chen, K. Kirschbaum, K. Appavoo, M. Y. Sfeir and R. Jin, Sci. Adv., 2015, 1, e1500045 CrossRef PubMed.
  67. C. Kumara and A. Dass, Anal. Chem., 2014, 86, 4227–4232 CrossRef CAS PubMed.
  68. A. Ghosh, M. Bodiuzzaman, A. Nag, M. Jash, A. Baksi and T. Pradeep, ACS Nano, 2017, 11, 11145–11151 CrossRef CAS.
  69. J. H. Huang, Y. Cui, P. Luo, Z. Y. Wang and S. Q. Zang, Adv. Sci., 2025, 12, e01186 CrossRef CAS.
  70. S. F. Yuan, C. Q. Xu, W. Di Liu, J. X. Zhang, J. Li and Q. M. Wang, J. Am. Chem. Soc., 2021, 143, 12261–12267 CrossRef CAS PubMed.
  71. M. Qu, H. Li, L. H. Xie, S. T. Yan, J. R. Li, J. H. Wang, C. Y. Wei, Y. W. Wu and X. M. Zhang, J. Am. Chem. Soc., 2017, 139, 12346–12349 CrossRef CAS PubMed.
  72. H. Yi, K. M. Osten, T. I. Levchenko, A. J. Veinot, Y. Aramaki, T. Ooi, M. Nambo and C. M. Crudden, Chem. Sci., 2021, 12, 10436–10440 RSC.
  73. J. Chen, Q. F. Zhang, P. G. Williard and L. S. Wang, Inorg. Chem., 2014, 53, 3932–3934 CrossRef CAS PubMed.
  74. S. Ito, S. Takano and T. Tsukuda, J. Phys. Chem. Lett., 2019, 10, 6892–6896 CrossRef CAS PubMed.
  75. F. Hu, G. Yang, Z. C. Long, W. Q. Shi, G. J. Liang, J. Q. Wang and Q. M. Wang, Small, 2025, 21, e2502106 CrossRef PubMed.
  76. X. Gong, C. Zheng, D. Zuo, S. Li, W. H. Fang and H. Shen, Dalton Trans., 2025, 54, 9368–9375 RSC.
  77. B. Zhang, X. Tan, Z.-H. Zhang, C.-Y. Liu, F. Hu, H.-S. Hu, C. Chen and Q.-M. Wang, CCS Chem., 2025, 1–8 Search PubMed.
  78. J. Tang, C. Liu, C. Zhu, K. Sun, H. Wang, W. Yin, C. Xu, Y. Li, W. Wang, L. Wang, R. Wu, C. Liu and J. Huang, Nanoscale, 2023, 15, 2843–2848 RSC.
  79. S. K. Eswaramoorthy and A. Dass, J. Phys. Chem. C, 2022, 126, 444–450 CrossRef CAS.
  80. S.-I. Tanaka, K. Aoki, A. Muratsugu, H. Ishitobi, T. Jin and Y. Inouye, Opt. Mater. Express, 2013, 3, 157 CrossRef CAS.
  81. T. Higaki, K. Tanaka, H. Izu, S. Oishi, K. Kawamoto, M. Tada, W. M. C. Sameera, R. Takahata, T. Teranishi, S. Kikkawa, S. Yamazoe, T. Shiga, M. Nihei, T. Kato, R. E. Cramer, Z. Zhang, K. Meyer and Y. Ohki, J. Am. Chem. Soc., 2025, 147, 3215–3222 CrossRef CAS PubMed.
  82. S. Bhat, I. Chakraborty, T. A. Maark, A. Mitra, G. De and T. Pradeep, RSC Adv., 2016, 6, 26679–26688 RSC.
  83. L. Liao, S. Zhuang, C. Yao, N. Yan, J. Chen, C. Wang, N. Xia, X. Liu, M. B. Li, L. Li, X. Bao and Z. Wu, J. Am. Chem. Soc., 2016, 138, 10425–10428 CrossRef CAS PubMed.
  84. L. Xu, Q. Li, T. Li, J. Chai, S. Yang and M. Zhu, Inorg. Chem. Front., 2021, 8, 4820–4827 RSC.
  85. X. Kang, X. Wei, S. Jin, Q. Yuan, X. Luan, Y. Pei, S. Wang, M. Zhu and R. Jin, Proc. Natl. Acad. Sci. U. S. A., 2019, 116, 18834–18840 CrossRef CAS PubMed.
  86. S. Wang, Y. Song, S. Jin, X. Liu, J. Zhang, Y. Pei, X. Meng, M. Chen, P. Li and M. Zhu, J. Am. Chem. Soc., 2015, 137, 4018–4021 CrossRef CAS PubMed.
  87. M. S. Bootharaju, C. P. Joshi, M. R. Parida, O. F. Mohammed and O. M. Bakr, Angew. Chem., 2016, 128, 934–938 CrossRef.
  88. G. Soldan, M. A. Aljuhani, M. S. Bootharaju, L. G. AbdulHalim, M. R. Parida, A. Emwas, O. F. Mohammed and O. M. Bakr, Angew. Chem., 2016, 128, 5843–5847 CrossRef.
  89. C. Zeng, Y. Chen, A. Das and R. Jin, J. Phys. Chem. Lett., 2015, 6, 2976–2986 CrossRef CAS PubMed.
  90. K. H. Wijesinghe, N. A. Sakthivel, L. Sementa, B. Yoon, A. Fortunelli, U. Landman and A. Dass, J. Phys. Chem. C, 2021, 125, 20488–20502 CrossRef CAS.
  91. C. Zeng, C. Liu, Y. Pei and R. Jin, ACS Nano, 2013, 7, 6138–6145 CrossRef CAS PubMed.
  92. C. Liu, J. Lin, Y. Shi and G. Li, Nanoscale, 2015, 7, 5987–5990 RSC.
  93. P. R. Nimmala, S. Theivendran, G. Barcaro, L. Sementa, C. Kumara, V. R. Jupally, E. Apra, M. Stener, A. Fortunelli and A. Dass, J. Phys. Chem. Lett., 2015, 6, 2134–2139 CrossRef CAS PubMed.
  94. C. Kumara, X. Zuo, J. Ilavsky, K. W. Chapman, D. A. Cullen and A. Dass, J. Am. Chem. Soc., 2014, 136, 7410–7417 CrossRef CAS PubMed.
  95. C. Kumara, X. Zuo, D. A. Cullen and A. Dass, ACS Nano, 2014, 8, 6431–6439 CrossRef CAS PubMed.
  96. C. Kumara, M. M. Hoque, X. Zuo, D. A. Cullen, R. L. Whetten and A. Dass, J. Phys. Chem. Lett., 2018, 9, 6825–6832 CrossRef CAS PubMed.
  97. S. Vergara, U. Santiago, C. Kumara, D. Alducin, R. L. Whetten, M. Jose Yacaman, A. Dass and A. Ponce, J. Phys. Chem. C, 2018, 122, 26733–26738 CrossRef CAS.
  98. Y. Negishi, R. Arai, Y. Niihori and T. Tsukuda, Chem. Commun., 2011, 47, 5693–5695 RSC.
  99. P. Bose, K. Kumaranchira Ramankutty, P. Chakraborty, E. Khatun and T. Pradeep, Nanoscale, 2024, 16, 1446–1470 RSC.
  100. K. R. Krishnadas, A. Ghosh, A. Baksi, I. Chakraborty, G. Natarajan and T. Pradeep, J. Am. Chem. Soc., 2016, 138, 140–148 CrossRef CAS PubMed.
  101. K. R. Krishnadas, A. Baksi, A. Ghosh, G. Natarajan and T. Pradeep, Nat. Commun., 2016, 7, 13447 CrossRef CAS PubMed.
  102. M. Neumaier, A. Baksi, P. Weis, E. K. Schneider, P. Chakraborty, H. Hahn, T. Pradeep and M. M. Kappes, J. Am. Chem. Soc., 2021, 143, 6969–6980 CrossRef CAS PubMed.
  103. B. S. Sooraj, J. Roy, M. Mukherjee, A. Jose and T. Pradeep, Langmuir, 2024, 40, 15244–15251 CrossRef CAS PubMed.
  104. P. Chakraborty, A. Nag, G. Natarajan, N. Bandyopadhyay, G. Paramasivam, M. K. Panwar, J. Chakrabarti and T. Pradeep, Sci. Adv., 2019, 5, eaau7555 CrossRef PubMed.
  105. L. Tang, X. Kang, X. Wang, X. Zhang, X. Yuan and S. Wang, Inorg. Chem., 2021, 60, 3037–3045 CrossRef CAS PubMed.
  106. M. Suyama, S. Takano and T. Tsukuda, J. Am. Chem. Soc., 2023, 145, 3361–3368 CrossRef CAS PubMed.
  107. S. Acharya, J. Roy, D. Roy, B. Pathak and T. Pradeep, J. Phys. Chem. C, 2025, 129, 5840–5850 CrossRef CAS.
  108. C. A. Fields-Zinna, J. S. Sampson, M. C. Crowe, J. B. Tracy, J. F. Parker, A. M. DeNey, D. C. Muddiman and R. W. Murray, J. Am. Chem. Soc., 2009, 131, 13844–13851 CrossRef CAS PubMed.
  109. L. A. Angel, L. T. Majors, A. C. Dharmaratne and A. Dass, ACS Nano, 2010, 4, 4691–4700 CrossRef CAS PubMed.
  110. D. M. Black, N. Bhattarai, R. L. Whetten and S. B. H. Bach, J. Phys. Chem. A, 2014, 118, 10679–10687 CrossRef CAS PubMed.
  111. P. Chakraborty, A. Baksi, E. Khatun, A. Nag, A. Ghosh and T. Pradeep, J. Phys. Chem. C, 2017, 121, 10971–10981 CrossRef CAS.
  112. Q. Yao, V. Fung, C. Sun, S. Huang, T. Chen, D.-E. Jiang, J. Y. Lee and J. Xie, Nat. Commun., 2018, 9, 1979 CrossRef PubMed.
  113. Y. Cao, T. Liu, T. Chen, B. Zhang, D. en Jiang and J. Xie, Nat. Commun., 2021, 12, 3212 CrossRef CAS PubMed.
  114. G. E. Johnson, T. Priest and J. Laskin, Chem. Sci., 2014, 5, 3275–3286 RSC.
  115. A. Baksi, S. R. Harvey, G. Natarajan, V. H. Wysocki and T. Pradeep, Chem. Commun., 2016, 52, 3805–3808 RSC.
  116. J. S. Brodbelt, L. J. Morrison and I. Santos, Chem. Rev., 2020, 120, 3328–3380 CrossRef CAS PubMed.
  117. D. M. Black, C. M. Crittenden, J. S. Brodbelt and R. L. Whetten, J. Phys. Chem. Lett., 2017, 8, 1283–1289 CrossRef CAS PubMed.
  118. Y. Zhang, X. Gu, Z. Li, P. Sanwal, Y. X. Miao and G. Li, J. Phys. Chem. Lett., 2025, 16, 2314–2319 CrossRef CAS PubMed.
  119. Y. Zhang, X. Gu, F. K. Busari, S. Barkaoui, Z. K. Han, A. Baiker, Z. Zhao and G. Li, Nano Res., 2024, 17, 9594–9600 CrossRef CAS.
  120. A. Jose, J. N. Walker, M. Khatun, S. Malola, B. S. Sooraj, H. Häkkinen, J. S. Brodbelt and T. Pradeep, Chem. Commun., 2025, 61, 6482–6485 RSC.
  121. J. Zhang, H. D. Wang, Y. Zhang, Z. Li, D. Yang, D. H. Zhang, T. Tsukuda and G. Li, J. Phys. Chem. Lett., 2023, 14, 4179–4184 CrossRef CAS PubMed.
  122. H. H. Hill Jr., W. F. Siems, R. H. St Louis and D. G. McMinn, Anal. Chem., 1990, 62, 1201A–1209A CrossRef CAS PubMed.
  123. A. B. Kanu, P. Dwivedi, M. Tam, L. Matz and H. H. Hill Jr., J. Mass Spectrom., 2008, 43, 1–22 CrossRef CAS PubMed.
  124. G. A. Eiceman, Crit. Rev. Anal. Chem., 1991, 22, 471–490 CrossRef CAS.
  125. J. N. Dodds and E. S. Baker, J. Am. Soc. Mass Spectrom., 2019, 30, 2185–2195 CrossRef CAS PubMed.
  126. A. A. Shvartsburg and R. D. Smith, Anal. Chem., 2008, 80, 9689–9699 CrossRef CAS PubMed.
  127. F. Lanucara, S. W. Holman, C. J. Gray and C. E. Eyers, Nat. Chem., 2014, 6, 281–294 CrossRef CAS.
  128. K. Michelmann, J. A. Silveira, M. E. Ridgeway and M. A. Park, J. Am. Soc. Mass Spectrom., 2014, 26, 14–24 CrossRef PubMed.
  129. E. Christofi and P. Barran, Chem. Rev., 2023, 123, 2902–2949 CrossRef CAS PubMed.
  130. J. N. Dodds and E. S. Baker, J. Am. Soc. Mass Spectrom., 2019, 30, 2185–2195 CrossRef CAS PubMed.
  131. A. Baksi, P. Chakraborty, S. Bhat, G. Natarajan and T. Pradeep, Chem. Commun., 2016, 52, 8397–8400 RSC.
  132. E. Kalenius, S. Malola, M. F. Matus, R. Kazan, T. Bürgi and H. Häkkinen, J. Am. Chem. Soc., 2021, 143, 1273–1277 CrossRef CAS PubMed.
  133. Y. Zeng, S. Havenridge, M. Gharib, A. Baksi, K. L. D. M. Weerawardene, A. R. Ziefuß, C. Strelow, C. Rehbock, A. Mews, S. Barcikowski, M. M. Kappes, W. J. Parak, C. M. Aikens and I. Chakraborty, J. Am. Chem. Soc., 2021, 143, 9405–9414 CrossRef CAS PubMed.
  134. P. Chakraborty, S. Malola, M. Neumaier, P. Weis, H. Häkkinen and M. M. Kappes, Angew. Chem., Int. Ed., 2023, 62, e202305836 CrossRef CAS PubMed.
  135. A. Baksi, E. K. Schneider, P. Weis, I. Chakraborty, O. Fuhr, S. Lebedkin, W. J. Parak and M. M. Kappes, ACS Nano, 2020, 14, 15064–15070 CrossRef CAS PubMed.
  136. J. Roy, A. Das, A. Jana, P. Chakraborty, M. Neumaier, H. Hahn, B. Pathak, M. M. Kappes and T. Pradeep, ACS Nano, 2025, 19, 5727–5738 CrossRef CAS PubMed.
  137. K. Giles, J. Ujma, J. Wildgoose, S. Pringle, K. Richardson, D. Langridge and M. Green, Anal. Chem., 2019, 91, 8564–8573 CrossRef CAS PubMed.
  138. J. Ujma, D. Ropartz, K. Giles, K. Richardson, D. Langridge, J. Wildgoose, M. Green and S. Pringle, J. Am. Soc. Mass Spectrom., 2019, 30, 1028–1037 CrossRef CAS PubMed.
  139. S. I. Merenbloom, S. L. Koeniger, B. C. Bohrer, S. J. Valentine and D. E. Clemmer, Anal. Chem., 2008, 80, 1918–1927 CrossRef CAS PubMed.
  140. P. Chakraborty, M. Neumaier, J. Seibel, N. Da Roit, A. Böttcher, C. Schmitt, D. Wang, C. Kübel, S. Behrens and M. M. Kappes, ACS Nano, 2025, 19, 3624–3634 CrossRef CAS.
  141. F. Hennrich, S. Ito, P. Weis, M. Neumaier, S. Takano, T. Tsukuda and M. M. Kappes, Phys. Chem. Chem. Phys., 2024, 26, 8408–8418 RSC.
  142. L.-M. Wang and L.-S. Wang, Nanoscale, 2012, 4, 4038–4053 RSC.
  143. K. Hirata, K. Yamashita, S. Muramatsu, S. Takano, K. Ohshimo, T. Azuma, R. Nakanishi, T. Nagata, S. Yamazoe, K. Koyasu and T. Tsukuda, Nanoscale, 2017, 9, 13409–13412 RSC.
  144. R. Hamouda, B. Bellina, F. Bertorelle, I. Compagnon, R. Antoine, M. Broyer, D. Rayane and P. Dugourd, J. Phys. Chem. Lett., 2010, 1, 3189–3194 CrossRef CAS.
  145. Y. Tasaka, K. Nakamura, S. Malola, K. Hirata, K. Kim, K. Koyasu, H. Häkkinen and T. Tsukuda, J. Phys. Chem. Lett., 2020, 11, 3069–3074 CrossRef CAS PubMed.
  146. S. Ito, Y. Tasaka, K. Nakamura, Y. Fujiwara, K. Hirata, K. Koyasu and T. Tsukuda, J. Phys. Chem. Lett., 2022, 13, 5049–5055 CrossRef CAS.
  147. K. Kim, K. Hirata, K. Nakamura, H. Kitazawa, S. Hayashi, K. Koyasu and T. Tsukuda, Angew. Chem., 2019, 131, 11763–11767 CrossRef.
  148. K. Akazawa, S. Ito, Y. Hamasaki, K. Koyasu and T. Tsukuda, J. Phys. Chem. A, 2025, 129, 6043–6048 CrossRef CAS PubMed.
  149. S. Ito, Y. Fujiwara, T. Mohr, S. Masuda, K. Koyasu, M. Kappes and T. Tsukuda, J. Phys. Chem. Lett., 2025, 8531–8535 CrossRef CAS.
  150. D. Z. Keifer, E. E. Pierson and M. F. Jarrold, Analyst, 2017, 142, 1654–1671 RSC.
  151. T. Doussineau, C. Y. Bao, C. Clavier, X. Dagany, M. Kerleroux, R. Antoine and P. Dugourd, Rev. Sci. Instrum., 2011, 82, 084104 CrossRef.
  152. T. Doussineau, C. Y. Bao, R. Antoine, P. Dugourd, W. Zhang, F. D'Agosto and B. Charleux, ACS Macro Lett., 2012, 1, 414–417 CrossRef CAS PubMed.
  153. A. G. Elliott, C. C. Harper, H. W. Lin and E. R. Williams, Analyst, 2017, 142, 2760–2769 RSC.
  154. A. G. Elliott, C. C. Harper, H. W. Lin, A. C. Susa, Z. Xia and E. R. Williams, Anal. Chem., 2017, 89, 7701–7708 CrossRef CAS PubMed.
  155. A. R. Todd, L. F. Barnes, K. Young, A. Zlotnick and M. F. Jarrold, Anal. Chem., 2020, 92, 11357–11364 CrossRef CAS.
  156. C. C. Harper, J. S. Jordan, S. Papanu and E. R. Williams, ACS Nano, 2024, 18, 17806–17814 CrossRef CAS.
  157. T. P. Wörner, K. Aizikov, J. Snijder, K. L. Fort, A. A. Makarov and A. J. R. Heck, Nat. Chem., 2022, 14, 515–522 CrossRef.
  158. M. A. Zenaidee and J. A. Loo, Nat. Chem., 2022, 14, 482–483 CrossRef CAS.
  159. M. F. Jarrold, J. Am. Chem. Soc., 2024, 146, 5749–5758 CrossRef CAS PubMed.
  160. B. S. Sooraj, S. Maclot, A. Jose, C. Comby-Zerbino, T. Reinert, K. Unni, R. Antoine and T. Pradeep, J. Phys. Chem. Lett., 2025, 16, 7004–7011 CrossRef CAS.
  161. Z. M. Miller, C. C. Harper, H. Lee, A. J. Bischoff, M. B. Francis, D. V. Schaffer and E. R. Williams, J. Am. Soc. Mass Spectrom., 2022, 33, 2129–2137 CrossRef CAS PubMed.
  162. D. Z. Keifer, D. L. Shinholt and M. F. Jarrold, Anal. Chem., 2015, 87, 10330–10337 CrossRef CAS PubMed.
  163. A. R. Todd, A. W. Alexander and M. F. Jarrold, J. Am. Soc. Mass Spectrom., 2020, 31, 146–154 CrossRef CAS PubMed.
  164. J. O. Kafader, R. D. Melani, K. R. Durbin, B. Ikwuagwu, B. P. Early, R. T. Fellers, S. C. Beu, V. Zabrouskov, A. A. Makarov, J. T. Maze, D. L. Shinholt, P. F. Yip, D. Tullman-Ercek, M. W. Senko, P. D. Compton and N. L. Kelleher, Nat. Methods, 2020, 17, 391–394 CrossRef CAS PubMed.
  165. T. P. Wörner, J. Snijder, A. Bennett, M. Agbandje-McKenna, A. A. Makarov and A. J. R. Heck, Nat. Methods, 2020, 17, 395–398 CrossRef.
  166. A. C. Susa, Z. Xia and E. R. Williams, Angew. Chem., 2017, 129, 8020–8023 CrossRef.
  167. D. Wu and G. Piszczek, Eur. Biophys. J., 2021, 50, 403–409 CrossRef CAS PubMed.
  168. R. W. Taylor and V. Sandoghdar, Nano Lett., 2019, 19, 4827–4835 CrossRef CAS PubMed.
  169. L. Melo, A. Hui, M. Kowal, E. Boateng, Z. Poursorkh, E. Rocheron, J. Wong, A. Christy and E. Grant, J. Phys. Chem. B, 2021, 125, 12466–12475 CrossRef CAS PubMed.
  170. A. Pinkard, A. M. Champsaur and X. Roy, Acc. Chem. Res., 2018, 51, 919–929 CrossRef CAS.
  171. C. H. Lee, L. Liu, C. Bejger, A. Turkiewicz, T. Goko, C. J. Arguello, B. A. Frandsen, S. C. Cheung, T. Medina, T. J. S. Munsie, R. D'Ortenzio, G. M. Luke, T. Besara, R. A. Lalancette, T. Siegrist, P. W. Stephens, A. C. Crowther, L. E. Brus, Y. Matsuo, E. Nakamura, Y. J. Uemura, P. Kim, C. Nuckolls, M. L. Steigerwald and X. Roy, J. Am. Chem. Soc., 2014, 136, 16926–16931 CrossRef CAS.
  172. A. Turkiewicz, D. W. Paley, T. Besara, G. Elbaz, A. Pinkard, T. Siegrist and X. Roy, J. Am. Chem. Soc., 2014, 136, 15873–15876 CrossRef CAS PubMed.
  173. K. S. Joya, L. Sinatra, L. G. Abdulhalim, C. P. Joshi, M. N. Hedhili, O. M. Bakr and I. Hussain, Nanoscale, 2016, 8, 9695–9703 RSC.
  174. H. Gholipour-Ranjbar, H. Fang, J. Guan, D. Peters, A. Seifert, P. Jena and J. Laskin, Small, 2021, 17, e2002927 CrossRef.
  175. H. Gholipour-Ranjbar, Deepika, P. Jena and J. Laskin, Commun. Chem., 2022, 5, 130 CrossRef CAS PubMed.
  176. X. Li, X. Wu, N. Dilley, H. Gholipour-Ranjbar, S. Lee, D. Zemlyanov, H. Fang, P. Jena and J. Laskin, Small, 2025, 21, e2500070 CrossRef.
  177. A. J. Touchton, G. Wu and T. W. Hayton, Chem. Sci., 2022, 13, 5171–5175 RSC.
  178. T. Higaki, K. Tanaka, H. Izu, S. Oishi, K. Kawamoto, M. Tada, W. M. C. Sameera, R. Takahata, T. Teranishi, S. Kikkawa, S. Yamazoe, T. Shiga, M. Nihei, T. Kato, R. E. Cramer, Z. Zhang, K. Meyer and Y. Ohki, J. Am. Chem. Soc., 2025, 147, 3215–3222 CrossRef CAS PubMed.
  179. S. Rauschenbach, M. Ternes, L. Harnau and K. Kern, Annu. Rev. Anal. Chem., 2016, 9, 473–498 CrossRef CAS.
  180. H. J. Räder, A. Rouhanipour, A. M. Talarico, V. Palermo, P. Samorì and K. Müllen, Nat. Mater., 2006, 5, 276–280 CrossRef.
  181. B. Gologan, Z. Takáts, J. Alvarez, J. M. Wiseman, N. Talaty, Z. Ouyang and R. G. Cooks, J. Am. Soc. Mass Spectrom., 2004, 15, 1874–1884 CrossRef CAS PubMed.
  182. T. He and J. V. Jokerst, Biomater. Sci., 2020, 8, 5555–5573 RSC.
  183. A. Li, Q. Luo, S. J. Park and R. G. Cooks, Angew. Chem., Int. Ed., 2014, 53, 3147–3150 CrossRef CAS.
  184. J. K. Lee, D. Samanta, H. G. Nam and R. N. Zare, Nat. Commun., 2018, 9, 1562 CrossRef PubMed.
  185. D. Sarkar, R. Singh, A. Som, C. K. Manju, M. A. Ganayee, R. Adhikari and T. Pradeep, J. Phys. Chem. C, 2018, 122, 17777–17783 CrossRef CAS.
  186. D. Sarkar, M. K. Mahitha, A. Som, A. Li, M. Wleklinski, R. G. Cooks and T. Pradeep, Adv. Mater., 2016, 28, 2223–2228 CrossRef CAS PubMed.
  187. S. Bose, A. Chatterjee, S. K. Jenifer, B. Mondal, P. Srikrishnarka, D. Ghosh, A. R. Chowdhuri, M. P. Kannan, S. V. Elchuri and T. Pradeep, ACS Sustainable Chem. Eng., 2021, 9, 4554–4563 CrossRef CAS.
  188. D. Satyabola, T. Ahuja, S. Bose, B. Mondal, P. Srikrishnarka, M. P. Kannan, B. K. Spoorthi and T. Pradeep, J. Phys. Chem. C, 2021, 125, 10998–11006 CrossRef CAS.
  189. A. Jose, A. Jana, T. Gupte, A. S. Nair, K. Unni, A. Nagar, A. R. Kini, B. K. Spoorthi, S. K. Jana, B. Pathak and T. Pradeep, ACS Mater. Lett., 2023, 5, 893–899 CrossRef CAS.
  190. A. Jana, B. K. Spoorthi, A. S. Nair, A. Nagar, B. Pathak, T. Base and T. Pradeep, Nanoscale, 2023, 15, 8141–8147 RSC.
  191. G. E. Johnson, Q. Hu and J. Laskin, Annu. Rev. Anal. Chem., 2011, 4, 83–104 CrossRef CAS.
  192. B. Gologan, J. R. Green, J. Alvarez, J. Laskin and R. G. Cooks, Phys. Chem. Chem. Phys., 2005, 7, 1490–1500 RSC.
  193. U. Heiz, A. Sanchez, S. Abbet and W.-D. Schneider, Chem. Phys., 2000, 262, 189–200 CrossRef CAS.
  194. V. Prabhakaran, B. L. Mehdi, J. J. Ditto, M. H. Engelhard, B. Wang, K. D. D. Gunaratne, D. C. Johnson, N. D. Browning, G. E. Johnson and J. Laskin, Nat. Commun., 2016, 7, 11399 CrossRef CAS PubMed.
  195. Z. Ouyang, Z. Takáts, T. A. Blake, B. Gologan, A. J. Guymon, J. M. Wiseman, J. C. Oliver, V. J. Davisson and R. G. Cooks, Science, 2003, 301, 1351–1354 CrossRef CAS PubMed.
  196. P. Fremdling, T. K. Esser, B. Saha, A. A. Makarov, K. L. Fort, M. Reinhardt-Szyba, J. Gault and S. Rauschenbach, ACS Nano, 2022, 16, 14443–14455 CrossRef CAS.
  197. G. E. Johnson, C. Wang, T. Priest and J. Laskin, Anal. Chem., 2011, 83, 8069–8072 CrossRef CAS.
  198. T. K. Esser, J. Böhning, P. Fremdling, M. T. Agasid, A. Costin, K. Fort, A. Konijnenberg, J. D. Gilbert, A. Bahm, A. Makarov, C. V. Robinson, J. L. P. Benesch, L. Baker, T. A. M. Bharat, J. Gault and S. Rauschenbach, PNAS Nexus, 2022, 1, gac153 CrossRef PubMed.
  199. J. Lyu, J. Qian, Z. Yang and J. Xie, Nanoscale Horiz., 2025, 10, 2304–2339 RSC.
  200. Q. Tang, C. Cui, H. Ying, Q. Zeng, Y. Li, Z. Shi, S. C. Lin, B. Weng, Z. Zhou, F. Qi and L. S. Zheng, Anal. Chem., 2025, 97, 18404–18414 CrossRef CAS PubMed.
  201. H. Klein Moberg, G. Abbondanza, I. Nedrygailov, D. Albinsson, J. Fritzsche and C. Langhammer, Nat. Commun., 2025, 16, 7203 CrossRef CAS PubMed.
  202. T. C. Sams, S. E. Ying, M. Q. Edwards, E. T. Dziekonski and R. G. Cooks, Analysis Sensing, 2024, 5, e202400103 CrossRef.
  203. R. Hamouda, B. Bellina, F. Bertorelle, I. Compagnon, R. Antoine, M. Broyer, D. Rayane and P. Dugourd, J. Phys. Chem. Lett., 2010, 1, 3189–3194 CrossRef CAS.
  204. S. J. P. Marlton and A. J. Trevitt, Chem. Commun., 2022, 58, 9451–9467 RSC.
  205. M. S. Westphall, K. W. Lee, A. Z. Salome, J. M. Lodge, T. Grant and J. J. Coon, Nat. Commun., 2022, 13, 2276 CrossRef CAS PubMed.
  206. P. W. Fedick, N. M. Morato, F. Pu and R. G. Cooks, Int. J. Mass Spectrom., 2020, 452, 116326 CrossRef CAS.
  207. Y. Tasaka, M. Suyama, S. Ito, K. Koyasu, M. Kappes, F. Maran and T. Tsukuda, Angew. Chem., Int. Ed., 2024, 63, e202408335 CrossRef CAS PubMed.
  208. A. Mathew, F. Giskes, A. Lekkas, J. F. Greisch, G. B. Eijkel, I. G. M. Anthony, K. Fort, A. J. R. Heck, D. Papanastasiou, A. A. Makarov, S. R. Ellis and R. M. A. Heeren, J. Am. Soc. Mass Spectrom., 2023, 34, 1359–1371 CrossRef CAS PubMed.
  209. K. Chughtai and R. M. A. Heeren, Chem. Rev., 2010, 110, 3237–3277 CrossRef CAS PubMed.
  210. A. Z. Salome, K. W. Lee, T. Grant, M. S. Westphall and J. J. Coon, Anal. Chem., 2022, 94, 17616–17624 CrossRef CAS PubMed.
  211. C. A. McCandler, A. Pihlajamäki, S. Malola, H. Häkkinen and K. A. Persson, ACS Nano, 2024, 18, 19014–19023 CrossRef CAS PubMed.
  212. Z. Yang, A. Shi, R. Zhang, Z. Ji, J. Li, J. Lyu, J. Qian, T. Chen, X. Wang, F. You and J. Xie, ACS Nano, 2024, 18, 27138–27166 CrossRef CAS PubMed.
  213. H. Xiang, Y. Wang, X. Xu, C. Ruan, K. Wang, W. Cheng, M. Zhou, X. Liu and C. Yao, J. Am. Chem. Soc., 2024, 146, 28572–28579 CrossRef CAS.
  214. K. Koszinowski and K. Ballweg, Chem. – Eur. J., 2010, 16, 3285–3290 CrossRef CAS PubMed.
  215. Y. M. Tseng, J. H. Liao, T. H. Chiu, H. Liang, S. Kahlal, J. Y. Saillard and C. W. Liu, Inorg. Chem., 2023, 62, 3866–3874 CrossRef CAS PubMed.
  216. Z. Wu, E. Lanni, W. Chen, M. E. Bier, D. Ly and R. Jin, J. Am. Chem. Soc., 2009, 131, 16672–16674 CrossRef CAS PubMed.
  217. T. Udaya Bhaskara Rao and T. Pradeep, Angew. Chem., Int. Ed., 2010, 49, 3925–3929 CrossRef CAS PubMed.
  218. Y. M. Tseng, J. H. Liao, T. H. Chiu, H. Liang, S. Kahlal, J. Y. Saillard and C. W. Liu, Inorg. Chem., 2023, 62, 3866–3874 CrossRef CAS PubMed.
  219. L. Y. Sun, F. Wang, Y. Shui, T. Yang and Y. F. Han, Angew. Chem., Int. Ed., 2025, 64, e202510845 CrossRef CAS PubMed.
  220. H. Wu, M. Yang, B. Huang, W. Gan and Z. Luo, Sci. China: Chem., 2022, 65, 1594–1600 CrossRef CAS.
  221. T. U. B. Rao, B. Nataraju and T. Pradeep, J. Am. Chem. Soc., 2010, 132, 16304–16307 CrossRef CAS PubMed.
  222. B. J. Alamer, M. S. Bootharaju, S. M. Kozlov, Z. Cao, A. Shkurenko, S. Nematulloev, P. Maity, O. F. Mohammed, M. Eddaoudi, L. Cavallo, J. M. Basset and O. M. Bakr, Inorg. Chem., 2021, 60, 4306–4312 CrossRef CAS PubMed.
  223. K. Zheng, X. Yuan and J. Xie, Chem. Commun., 2017, 53, 9697–9700 RSC.
  224. W. J. Yen, J. H. Liao, T. H. Chiu, J. Y. Chen, Y. J. Chen, S. Kahlal, J. Y. Saillard and C. W. Liu, Nanoscale, 2024, 16, 7011–7018 RSC.
  225. A. Baksi, M. S. Bootharaju, X. Chen, H. Häkkinen and T. Pradeep, J. Phys. Chem. C, 2014, 118, 21722–21729 CrossRef CAS.
  226. A. Baksi, S. R. Harvey, G. Natarajan, V. H. Wysocki and T. Pradeep, Chem. Commun., 2016, 52, 3805–3808 RSC.
  227. V. Rück, V. A. Neacşu, M. B. Liisberg, C. B. Mollerup, P. H. Ju, T. Vosch, J. Kondo and C. Cerretani, Adv. Opt. Mater., 2023, 12, 2301928 CrossRef.
  228. W. A. Dar, A. Jana, K. S. Sugi, G. Paramasivam, M. Bodiuzzaman, E. Khatun, A. Som, A. Mahendranath, A. Chakraborty and T. Pradeep, Chem. Mater., 2022, 34, 4703–4711 CrossRef CAS.
  229. H. Yang, J. Lei, B. Wu, Y. Wang, M. Zhou, A. Xia, L. Zheng and N. Zheng, Chem. Commun., 2013, 49, 300–302 RSC.
  230. A. Mathew, P. R. Sajanlal and T. Pradeep, J. Mater. Chem., 2011, 21, 11205–11212 RSC.
  231. M. Jash, E. Khatun, P. Chakraborty, C. Sudhakar and T. Pradeep, J. Phys. Chem. C, 2020, 124, 20569–20577 CrossRef CAS.
  232. F. Bertorelle, R. Hamouda, D. Rayane, M. Broyer, R. Antoine, P. Dugourd, L. Gell, A. Kulesza, R. Mitrić and V. Bonačić-Koutecký, Nanoscale, 2013, 5, 5637–5643 RSC.
  233. W. A. Dar, M. Bodiuzzaman, D. Ghosh, G. Paramasivam, E. Khatun, K. S. Sugi and T. Pradeep, ACS Nano, 2019, 13, 13365–13373 CrossRef CAS PubMed.
  234. A. Gonzàlez-Rosell, S. Malola, R. Guha, N. R. Arevalos, M. F. Matus, M. E. Goulet, E. Haapaniemi, B. B. Katz, T. Vosch, J. Kondo, H. Häkkinen and S. M. Copp, J. Am. Chem. Soc., 2023, 145, 10721–10729 CrossRef PubMed.
  235. R. Guha, S. Malola, M. Rafik, M. Khatun, A. Gonzàlez-Rosell, H. Häkkinen and S. M. Copp, Nanoscale, 2024, 16, 20596–20607 RSC.
  236. A. Gonzàlez-Rosell, V. Rück, M. B. Liisberg, C. Cerretani, V. R. M. Nielsen, T. Vosch and S. M. Copp, Adv. Opt. Mater., 2025, 13, 2402752 CrossRef.
  237. M. M. Zhang, X. Y. Dong, Z. Y. Wang, X. M. Luo, J. H. Huang, S. Q. Zang and T. C. W. Mak, J. Am. Chem. Soc., 2021, 143, 6048–6053 CrossRef CAS PubMed.
  238. V. Yadav, A. Jana, S. Acharya, S. Malola, H. Nagar, A. Sharma, A. R. Kini, S. Antharjanam, J. Machacek, K. N. V. D. Adarsh, T. Base, H. Häkkinen and T. Pradeep, Nat. Commun., 2025, 16, 1197 CrossRef CAS PubMed.
  239. V. Rück, M. B. Liisberg, C. B. Mollerup, Y. He, J. Chen, C. Cerretani and T. Vosch, Angew. Chem., Int. Ed., 2023, 62, e202309760 CrossRef PubMed.
  240. M. S. Bootharaju, R. Dey, L. E. Gevers, M. N. Hedhili, J. M. Basset and O. M. Bakr, J. Am. Chem. Soc., 2016, 138, 13770–13773 CrossRef CAS PubMed.
  241. S. F. Yuan, P. Li, Q. Tang, X. K. Wan, Z. A. Nan, D. E. Jiang and Q. M. Wang, Nanoscale, 2017, 9, 11405–11409 RSC.
  242. R. S. Dhayal, Y. R. Lin, J. H. Liao, Y. J. Chen, Y. C. Liu, M. H. Chiang, S. Kahlal, J. Y. Saillard and C. W. Liu, Chem. – Eur. J., 2016, 22, 9943–9947 CrossRef CAS PubMed.
  243. P. Kumar, S. Khirid, D. K. Jangid, C. S. Nishad, P. Chauhan, P. Kumari, S. Meena, S. K. Bose, A. Kumar, B. Banerjee and R. S. Dhayal, Inorg. Chem., 2024, 63, 13724–13737 CrossRef CAS.
  244. R. S. Dhayal, J. H. Liao, Y. C. Liu, M. H. Chiang, S. Kahlal, J. Y. Saillard and C. W. Liu, Angew. Chem., Int. Ed., 2015, 54, 3702–3706 CrossRef CAS PubMed.
  245. Z. J. Guan, R. L. He, S. F. Yuan, J. J. Li, F. Hu, C. Y. Liu and Q. M. Wang, Angew. Chem., Int. Ed., 2022, 61, e202116965 CrossRef CAS PubMed.
  246. R. Guha, A. Gonzàlez-Rosell, M. Rafik, N. Arevalos, B. B. Katz and S. M. Copp, Chem. Sci., 2023, 14, 11340–11350 RSC.
  247. R. L. He, F. Hu, Z. J. Guan and Q. M. Wang, Angew. Chem., Int. Ed., 2024, 63, e202410827 CrossRef CAS.
  248. A. Jana, P. M. Unnikrishnan, A. K. Poonia, J. Roy, M. Jash, G. Paramasivam, J. Machacek, K. N. V. D. Adarsh, T. Base and T. Pradeep, Inorg. Chem., 2022, 61, 8593–8603 CrossRef CAS.
  249. E. Khatun, M. Bodiuzzaman, K. S. Sugi, P. Chakraborty, G. Paramasivam, W. A. Dar, T. Ahuja, S. Antharjanam and T. Pradeep, ACS Nano, 2019, 13, 5753–5759 CrossRef CAS PubMed.
  250. S. Li, X. Y. Dong, K. S. Qi, S. Q. Zang and T. C. W. Mak, J. Am. Chem. Soc., 2021, 143, 20574–20578 CrossRef CAS PubMed.
  251. G. Romolini, H. Kanazawa, C. B. Mollerup, M. B. Liisberg, S. W. Lind, Z. Huang, C. Cerretani, J. Kondo and T. Vosch, Small Struct., 2025, 6, 2500022 CrossRef CAS.
  252. L. G. AbdulHalim, M. S. Bootharaju, Q. Tang, S. Del Gobbo, R. G. AbdulHalim, M. Eddaoudi, D. E. Jiang and O. M. Bakr, J. Am. Chem. Soc., 2015, 137, 11970–11975 CrossRef CAS PubMed.
  253. P. Chakraborty, A. Nag, G. Paramasivam, G. Natarajan and T. Pradeep, ACS Nano, 2018, 12, 2415–2425 CrossRef CAS.
  254. E. Khatun, A. Ghosh, P. Chakraborty, P. Singh, M. Bodiuzzaman, P. Ganesan, G. Nataranjan, J. Ghosh, S. K. Pal and T. Pradeep, Nanoscale, 2018, 10, 20033–20042 RSC.
  255. M. Van Der Linden, A. Barendregt, A. J. Van Bunningen, P. T. K. Chin, D. Thies-Weesie, F. M. F. De Groot and A. Meijerink, Nanoscale, 2016, 8, 19901–19909 RSC.
  256. N. Xia, J. Yang and Z. Wu, Nanoscale, 2015, 7, 10013–10020 RSC.
  257. A. Jana, W. A. Dar, S. K. Jana, A. K. Poonia, V. Yadav, J. Roy, S. Chandra, K. N. V. D. Adarsh, R. H. A. Ras and T. Pradeep, Chem. Mater., 2023, 35, 7020–7031 CrossRef CAS.
  258. H. Yuan, M. Theresa, D. Bain, H. Fakhouri, K. Sreekanth, A. Ravi, S. Thomas, N. Kalarikkal, R. Antoine and E. K. Radhakrishnan, Inorg. Chem. Commun., 2024, 159, 111799 CrossRef CAS.
  259. J. Guo, S. Kumar, M. Bolan, A. Desireddy, T. P. Bigioni and W. P. Griffith, Anal. Chem., 2012, 84, 5304–5308 CrossRef CAS PubMed.
  260. T. Udayabhaskararao, M. S. Bootharaju and T. Pradeep, Nanoscale, 2013, 5, 9404–9411 RSC.
  261. Z. Wang, Y. Wang, T. Y. Xu, L. Li, C. M. Aikens, Z. Y. Gao, M. Azam, C. H. Tung and D. Sun, Angew. Chem., Int. Ed., 2024, 63, e202403464 CrossRef CAS PubMed.
  262. B. Wu, X. X. Li, S. T. Zheng and J. Xie, Chem. Commun., 2023, 59, 2927–2930 RSC.
  263. C. K. Manju, D. Ghosh, M. Bodiuzzaman and T. Pradeep, Dalton Trans., 2019, 48, 8664–8670 RSC.
  264. Z. J. Guan, J. L. Zeng, Z. A. Nan, X. K. Wan, Y. M. Lin and Q. M. Wang, Sci. Adv., 2016, 2, e1600323 CrossRef PubMed.
  265. X. Y. Li, H. F. Su, K. Yu, Y. Z. Tan, X. P. Wang, Y. Q. Zhao, D. Sun and L. S. Zheng, Nanoscale, 2015, 7, 8284–8288 RSC.
  266. X. H. Ma, Y. Si, L. L. Luo, Z. Y. Wang, S. Q. Zang and T. C. W. Mak, ACS Nano, 2022, 16, 5507–5514 CrossRef CAS.
  267. J. Chai, S. Yang, Y. Lv, T. Chen, S. Wang, H. Yu and M. Zhu, J. Am. Chem. Soc., 2018, 140, 15582–15585 CrossRef CAS PubMed.
  268. M. Bodiuzzaman, A. Ghosh, K. S. Sugi, A. Nag, E. Khatun, B. Varghese, G. Paramasivam, S. Antharjanam, G. Natarajan and T. Pradeep, Angew. Chem., 2019, 131, 195–200 CrossRef.
  269. A. Jana, M. Jash, A. K. Poonia, G. Paramasivam, M. R. Islam, P. Chakraborty, S. Antharjanam, J. Machacek, S. Ghosh, K. N. V. D. Adarsh, T. Base and T. Pradeep, ACS Nano, 2021, 15, 15781–15793 CrossRef CAS PubMed.
  270. Z. Wang, H. F. Su, L. P. Zhang, J. M. Dou, C. H. Tung, D. Sun and L. Zheng, ACS Nano, 2022, 16, 4500–4507 CrossRef CAS.
  271. L. M. Zheng, W. Q. Shi, F. Hu, Z. J. Guan and Q. M. Wang, J. Am. Chem. Soc., 2024, 146, 25101–25107 CrossRef CAS PubMed.
  272. L. G. Abdulhalim, S. Ashraf, K. Katsiev, A. R. Kirmani, N. Kothalawala, D. H. Anjum, S. Abbas, A. Amassian, F. Stellacci, A. Dass, I. Hussain and O. M. Bakr, J. Mater. Chem. A, 2013, 1, 10148–10154 RSC.
  273. A. Desireddy, B. E. Conn, J. Guo, B. Yoon, R. N. Barnett, B. M. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landman and T. P. Bigioni, Nature, 2013, 501, 399–402 CrossRef CAS PubMed.
  274. M. S. Bootharaju, S. Lee, G. Deng, S. Malola, W. Baek, H. Häkkinen, N. Zheng and T. Hyeon, Angew. Chem., Int. Ed., 2021, 60, 9038–9044 CrossRef CAS.
  275. I. Chakraborty, W. Kurashige, K. Kanehira, L. Gell, H. Häkkinen, Y. Negishi and T. Pradeep, J. Phys. Chem. Lett., 2013, 4, 3351–3355 CrossRef CAS PubMed.
  276. I. Chakraborty and T. Pradeep, Nanoscale, 2014, 6, 14190–14194 RSC.
  277. B. E. Conn, A. Desireddy, A. Atnagulov, S. Wickramasinghe, B. Bhattarai, B. Yoon, R. N. Barnett, Y. Abdollahian, Y. W. Kim, W. P. Griffith, S. R. J. Oliver, U. Landman and T. P. Bigioni, J. Phys. Chem. C, 2015, 119, 11238–11249 CrossRef CAS.
  278. M. S. Bootharaju, V. M. Burlakov, T. M. D. Besong, C. P. Joshi, L. G. Abdulhalim, D. M. Black, R. L. Whetten, A. Goriely and O. M. Bakr, Chem. Mater., 2015, 27, 4289–4297 CrossRef CAS.
  279. W. Di Liu, J. Q. Wang, S. F. Yuan, X. Chen and Q. M. Wang, Angew. Chem., Int. Ed., 2021, 60, 11430–11435 CrossRef PubMed.
  280. S. S. Zhang, F. Alkan, H. F. Su, C. M. Aikens, C. H. Tung and D. Sun, J. Am. Chem. Soc., 2019, 141, 4460–4467 CrossRef CAS.
  281. X. Wei, H. Shen, C. Xu, H. Li, S. Jin, X. Kang and M. Zhu, Inorg. Chem., 2021, 60, 5931–5936 CrossRef CAS.
  282. W. Du, S. Jin, L. Xiong, M. Chen, J. Zhang, X. Zou, Y. Pei, S. Wang and M. Zhu, J. Am. Chem. Soc., 2017, 139, 1618–1624 CrossRef CAS.
  283. Z. Wang, Y. J. Zhu, Y. Z. Li, G. L. Zhuang, K. P. Song, Z. Y. Gao, J. M. Dou, M. Kurmoo, C. H. Tung and D. Sun, Nat. Commun., 2022, 13, 1802 CrossRef CAS.
  284. F. Hu, H. W. Luyang, R. L. He, Z. J. Guan, S. F. Yuan and Q. M. Wang, J. Am. Chem. Soc., 2022, 144, 19365–19371 CrossRef CAS.
  285. I. Chakraborty, S. Mahata, A. Mitra, G. De and T. Pradeep, Dalton Trans., 2014, 43, 17904–17907 RSC.
  286. Z. Wang, M. D. Li, J. Y. Shi, H. F. Su, J. W. Liu, L. Feng, Z. Y. Gao, Q. W. Xue, C. H. Tung, D. Sun and L. S. Zheng, CCS Chem., 2022, 4, 1788–1795 CrossRef CAS.
  287. E. Khatun, A. Ghosh, D. Ghosh, P. Chakraborty, A. Nag, B. Mondal, S. Chennu and T. Pradeep, Nanoscale, 2017, 9, 8240–8248 RSC.
  288. Y. M. Su, X. Y. Li, Z. Wang, Z. Y. Gao, X. Q. Huang, C. H. Tung and D. Sun, J. Chem. Phys., 2021, 155, 234303 CrossRef CAS PubMed.
  289. A. Ghosh and T. Pradeep, Eur. J. Inorg. Chem., 2014, 2014, 5271–5275 CrossRef CAS.
  290. M. Zhou, Y. Bao, S. Jin, S. Wen, S. Chen and M. Zhu, Chem. Commun., 2021, 57, 10383–10386 RSC.
  291. L. M. Zheng, Z. C. Long, F. Hu, J. Chan, W. Q. Shi, B. Zhang, Z. Wang and Q. M. Wang, Angew. Chem., Int. Ed., 2025, 64, e202506971 CrossRef CAS PubMed.
  292. I. Chakraborty, T. Udayabhaskararao and T. Pradeep, Chem. Commun., 2012, 48, 6788–6790 RSC.
  293. W. J. Zhang, Z. Liu, K. P. Song, C. M. Aikens, S. S. Zhang, Z. Wang, C. H. Tung and D. Sun, Angew. Chem., Int. Ed., 2021, 60, 4231–4237 CrossRef CAS PubMed.
  294. Z. Wang, H. F. Su, Y. W. Gong, Q. P. Qu, Y. F. Bi, C. H. Tung, D. Sun and L. S. Zheng, Nat. Commun., 2020, 11, 308 CrossRef CAS PubMed.
  295. F. Hu, R. L. He, Z. J. Guan, C. Y. Liu and Q. M. Wang, Angew. Chem., Int. Ed., 2023, 62, e202304134 CrossRef CAS PubMed.
  296. M. Qu, F. Q. Zhang, G. L. Zhang, M. M. Qiao, L. X. Zhao, S. L. Li, M. Walter and X. M. Zhang, Angew. Chem., Int. Ed., 2024, 63, e202318390 CrossRef CAS PubMed.
  297. F. Hu, J. Li, Z. Guan, S. Yuan and Q. Wang, Angew. Chem., 2020, 132, 5350–5353 CrossRef.
  298. D. Fenske, C. E. Anson, A. Eichhöfer, O. Fuhr, A. Ingendoh, C. Persau and C. Richert, Angew. Chem., Int. Ed., 2005, 44, 5242–5246 CrossRef CAS PubMed.
  299. H. Yang, Y. Wang, X. Chen, X. Zhao, L. Gu, H. Huang, J. Yan, C. Xu, G. Li, J. Wu, A. J. Edwards, B. Dittrich, Z. Tang, D. Wang, L. Lehtovaara, H. Häkkinen and N. Zheng, Nat. Commun., 2016, 7, 12809 CrossRef CAS PubMed.
  300. M. R. Branham, A. D. Douglas, A. J. Mills, J. B. Tracy, P. S. White and R. W. Murray, Langmuir, 2006, 22, 11376–11383 CrossRef CAS PubMed.
  301. I. Chakraborty, A. Govindarajan, J. Erusappan, A. Ghosh, T. Pradeep, B. Yoon, R. L. Whetten and U. Landman, Nano Lett., 2012, 12, 5861–5866 CrossRef CAS PubMed.
  302. C. E. Anson, A. Eichöfer, I. Issac, D. Fenske, O. Fuhr, P. Sevillano, C. Persau, D. Stalke and J. Zhang, Angew. Chem., Int. Ed., 2008, 47, 1326–1331 CrossRef CAS PubMed.
  303. C. G. Shi, J. H. Jia, Y. Jia, G. Li and M. L. Tong, CCS Chem., 2023, 5, 1154–1162 CrossRef CAS.
  304. M. A. Hewitt, H. Hernández and G. E. Johnson, J. Am. Soc. Mass Spectrom., 2021, 32, 237–246 CrossRef CAS PubMed.
  305. X. Ren, J. Fu, X. Lin, X. Fu, J. Yan, R. Wu, C. Liu and J. Huang, Dalton Trans., 2018, 47, 7487–7491 RSC.
  306. L. Moreaud, J. Prasad, S. Mazères, C. Marcelot, C. Comby-Zerbino, R. Antoine, O. Heintz and E. Dujardin, J. Mater. Chem. C, 2022, 10, 2263–2270 RSC.
  307. R. W. Y. Man, H. Yi, S. Malola, S. Takano, T. Tsukuda, H. Häkkinen, M. Nambo and C. M. Crudden, J. Am. Chem. Soc., 2022, 144, 2056–2061 CrossRef CAS PubMed.
  308. C. L. Lin, X. Lei, Y. Zhang, H. Wang, H. Li, Y. Zhao, S. Zhang, W. Fan, W. W. Xu and M. B. Li, Nano Lett., 2025, 25, 11374–11381 CrossRef CAS PubMed.
  309. N. Rashi, A. Devi and A. Patra, J. Phys. Chem. C, 2025, 129, 12633–12640 CrossRef.
  310. L. D. Plath, H. Abroshan, C. Zeng, H. J. Kim, R. Jin and M. E. Bier, J. Am. Soc. Mass Spectrom., 2022, 33, 521–529 CrossRef CAS PubMed.
  311. P. A. Lummis, K. M. Osten, T. I. Levchenko, M. Sabooni Asre Hazer, S. Malola, B. Owens-Baird, A. J. Veinot, E. L. Albright, G. Schatte, S. Takano, K. Kovnir, K. G. Stamplecoskie, T. Tsukuda, H. Häkkinen, M. Nambo and C. M. Crudden, JACS Au, 2022, 2, 875–885 CrossRef CAS PubMed.
  312. Z. Wang, W. Cai and J. Sui, ChemPhysChem, 2009, 10, 2012–2015 CrossRef CAS PubMed.
  313. T. H. Huang, F. Z. Zhao, Q. L. Hu, Q. Liu, T. C. Wu, D. Zheng, T. Kang, L. C. Gui and J. Chen, Inorg. Chem., 2020, 59, 16027–16034 CrossRef CAS PubMed.
  314. N. Shinjo, S. Takano and T. Tsukuda, Bull. Korean Chem. Soc., 2021, 42, 1265–1268 CrossRef CAS.
  315. R. Tomihara, K. Hirata, H. Yamamoto, S. Takano, K. Koyasu and T. Tsukuda, ACS Omega, 2018, 3, 6237–6242 CrossRef CAS PubMed.
  316. Y. Shichibu, K. Suzuki and K. Konishi, Nanoscale, 2012, 4, 4125–4129 RSC.
  317. M. R. Narouz, S. Takano, P. A. Lummis, T. I. Levchenko, A. Nazemi, S. Kaappa, S. Malola, G. Yousefalizadeh, L. A. Calhoun, K. G. Stamplecoskie, H. Häkkinen, T. Tsukuda and C. M. Crudden, J. Am. Chem. Soc., 2019, 141, 14997–15002 CrossRef CAS PubMed.
  318. H. Zhao, Q. You, W. Zhu, J. Li, H. Deng, M. B. Li, Y. Zhao and Z. Wu, Small, 2023, 19, e2207936 CrossRef PubMed.
  319. E. S. Shibu and T. Pradeep, Chem. Mater., 2011, 23, 989–999 CrossRef CAS.
  320. G. F. Combes, H. Fakhouri, C. Moulin, M. Girod, F. Bertorelle, S. Basu, R. Ladouce, M. P. Bakulić, Ž. S. Maršić, I. Russier-Antoine, P. F. Brevet, P. Dugourd, A. Krisko, K. Trajković, M. Radman, V. Bonačić-Koutecký and R. Antoine, Commun. Chem., 2021, 4, 69 CrossRef CAS PubMed.
  321. S. Yang, S. Chen, L. Xiong, C. Liu, H. Yu, S. Wang, N. L. Rosi, Y. Pei and M. Zhu, J. Am. Chem. Soc., 2018, 140, 10988–10994 CrossRef CAS PubMed.
  322. Q. Yao, Y. Yu, X. Yuan, Y. Yu, J. Xie and J. Y. Lee, Small, 2013, 9, 2696–2701 CrossRef CAS PubMed.
  323. A. Alhalabi, C. Saint-Pierre, E. Boeri-Erba, P. H. Elchinger, H. Kaur, D. Gasparutto and X. Le Guével, Nanoscale, 2025, 17, 12775–12785 RSC.
  324. A. Ghosh, T. Udayabhaskararao and T. Pradeep, J. Phys. Chem. Lett., 2012, 3, 1997–2002 CrossRef CAS.
  325. S. Chen, S. Wang, J. Zhong, Y. Song, J. Zhang, H. Sheng, Y. Pei and M. Zhu, Angew. Chem., Int. Ed., 2015, 54, 3145–3149 CrossRef CAS PubMed.
  326. T. Shigeta, S. Takano and T. Tsukuda, Angew. Chem., Int. Ed., 2022, 61, e202113275 CrossRef CAS PubMed.
  327. R. Itteboina, U. Di. Madhuri, P. Ghosal, M. Kannan, T. K. Sau, T. Tsukuda and S. Bhardwaj, J. Phys. Chem. A, 2018, 122, 1228–1234 CrossRef CAS PubMed.
  328. X. K. Wan, Q. Tang, S. F. Yuan, D. E. Jiang and Q. M. Wang, J. Am. Chem. Soc., 2015, 137, 652–655 CrossRef CAS PubMed.
  329. Z. Wu, M. A. MacDonald, J. Chen, P. Zhang and R. Jin, J. Am. Chem. Soc., 2011, 133, 9670–9673 CrossRef CAS PubMed.
  330. L. Wang, K. Koyasu and T. Tsukuda, J. Cluster Sci., 2025, 36, 139 CrossRef CAS.
  331. S. Wang, C. Han, X. Chen, Y. Xiang, Q. Li, J. Chai, S. Yang, Y. Du, Q. Luo and M. Zhu, ACS Nano, 2025, 19, 25334–25341 CrossRef CAS PubMed.
  332. Q. F. Zhang, X. Chen and L. S. Wang, Acc. Chem. Res., 2018, 51, 2159–2168 CrossRef CAS PubMed.
  333. X. K. Wan, X. S. Han, Z. J. Guan, W. Q. Shi, J. J. Li and Q. M. Wang, Nat. Commun., 2024, 15, 7214 CrossRef CAS PubMed.
  334. P. Aminfar, T. Ferguson, E. Steele, E. M. MacNeil, M. F. Matus, S. Malola, H. Häkkinen, P. N. Duchesne, H. P. Loock and K. G. Stamplecoskie, Nanoscale, 2023, 16, 205–211 RSC.
  335. E. S. Shibu, B. Radha, P. K. Verma, P. Bhyrappa, G. U. Kulkarni, S. K. Pal and T. Pradeep, ACS Appl. Mater. Interfaces, 2009, 1, 2199–2210 CrossRef CAS PubMed.
  336. J. Chen, Q. F. Zhang, T. A. Bonaccorso, P. G. Williard and L. S. Wang, J. Am. Chem. Soc., 2014, 136, 92–95 CrossRef CAS PubMed.
  337. H. Heo, S. Cho, Y. Kim, S. Ahn, J. H. Mok, H. Lee and D. Lee, Nanoscale, 2024, 16, 20147–20154 RSC.
  338. Y. Yu, Z. Luo, D. M. Chevrier, D. T. Leong, P. Zhang, D. E. Jiang and J. Xie, J. Am. Chem. Soc., 2014, 136, 1246–1249 CrossRef CAS PubMed.
  339. Q. Li, Y. Tan, B. Huang, S. Yang, J. Chai, X. Wang, Y. Pei and M. Zhu, J. Am. Chem. Soc., 2023, 145, 15859–15868 CrossRef CAS PubMed.
  340. Z. H. Gao, K. Wei, T. Wu, J. Dong, D. E. Jiang, S. Sun and L. S. Wang, J. Am. Chem. Soc., 2022, 144, 5258–5262 CrossRef CAS PubMed.
  341. J. Dong, P. Weis, V. Wani, M. M. Kappes and L. S. Wang, J. Phys. Chem. Lett., 2025, 16, 4975–4981 CrossRef CAS PubMed.
  342. S. Gratious, E. N. Nahan, R. Jin and S. Mandal, Acc. Mater. Res., 2024, 5, 1291–1302 CrossRef CAS.
  343. M. A. H. Muhammed, P. K. Verma, S. K. Pal, R. C. A. Kumar, S. Paul, R. V. Omkumar and P. Thalappil, Chem. – Eur. J., 2009, 15, 10110–10120 CrossRef CAS PubMed.
  344. A. Das, T. Li, K. Nobusada, C. Zeng, N. L. Rosi and R. Jin, J. Am. Chem. Soc., 2013, 135, 18264–18267 CrossRef CAS PubMed.
  345. Z. J. Guan, F. Hu, J. J. Li, Z. R. Wen, Y. M. Lin and Q. M. Wang, J. Am. Chem. Soc., 2020, 142, 2995–3001 CrossRef CAS PubMed.
  346. Y. Negishi, H. Horihata, A. Ebina, S. Miyajima, M. Nakamoto, A. Ikeda, T. Kawawaki and S. Hossain, Chem. Sci., 2022, 13, 5546–5556 RSC.
  347. A. Das, T. Li, K. Nobusada, Q. Zeng, N. L. Rosi and R. Jin, J. Am. Chem. Soc., 2012, 134, 20286–20289 CrossRef CAS PubMed.
  348. Y. Song, S. Wang, J. Zhang, X. Kang, S. Chen, P. Li, H. Sheng and M. Zhu, J. Am. Chem. Soc., 2014, 136, 2963–2965 CrossRef CAS PubMed.
  349. S. Hasegawa, S. Takano, K. Harano and T. Tsukuda, JACS Au, 2021, 1, 660–668 CrossRef CAS PubMed.
  350. Y. Shichibu, Y. Negishi, T. Tsukuda and T. Teranishi, J. Am. Chem. Soc., 2005, 127, 13464–13465 CrossRef CAS PubMed.
  351. Y. Shichibu, Y. Negishi, T. Watanabe, N. K. Chaki, H. Kawaguchi and T. Tsukuda, J. Phys. Chem. C, 2020, 111, 7845–7847 CrossRef.
  352. Y. Negishi, N. K. Chaki, Y. Shichibu, R. L. Whetten and T. Tsukuda, J. Am. Chem. Soc., 2007, 129, 11322–11323 CrossRef CAS PubMed.
  353. M. A. Habeeb Muhammed, A. K. Shaw, S. K. Pal and T. Pradeep, J. Phys. Chem. C, 2008, 112, 14324–14330 CrossRef.
  354. M. A. Habeeb Muhammed, S. Ramesh, S. S. Sinha, S. K. Pal and T. Pradeep, Nano Res., 2008, 1, 333–340 CrossRef.
  355. M. Zhu, W. T. Eckenhoff, T. Pintauer and R. Jin, J. Phys. Chem. C, 2008, 112, 14221–14224 CrossRef CAS.
  356. M. Zhu, E. Lanni, N. Garg, M. E. Bier and R. Jin, J. Am. Chem. Soc., 2008, 130, 1138–1139 CrossRef CAS PubMed.
  357. M. A. H. Muhammed and T. Pradeep, J. Cluster Sci., 2009, 20, 365–373 CrossRef.
  358. A. C. Dharmaratne, T. Krick and A. Dass, J. Am. Chem. Soc., 2009, 131, 13604–13605 CrossRef CAS.
  359. V. R. Jupally, R. Kota, E. Van Dornshuld, D. L. Mattern, G. S. Tschumper, D. E. Jiang and A. Dass, J. Am. Chem. Soc., 2011, 133, 20258–20266 CrossRef CAS.
  360. A. Dass, G. R. Dubay, C. A. Fields-Zinna and R. W. Murray, Anal. Chem., 2008, 80, 6845–6849 CrossRef CAS PubMed.
  361. Y. Negishi, W. Kurashige and U. Kamimura, Langmuir, 2011, 27, 12289–12292 CrossRef CAS.
  362. S. Xie, H. Tsunoyama, W. Kurashige, Y. Negishi and T. Tsukuda, ACS Catal., 2012, 2, 1519–1523 CrossRef CAS.
  363. T. Dainese, S. Antonello, J. A. Gascón, F. Pan, N. V. Perera, M. Ruzzi, A. Venzo, A. Zoleo, K. Rissanen and F. Maran, ACS Nano, 2014, 8, 3904–3912 CrossRef CAS PubMed.
  364. Y. Yu, Z. Luo, Y. Yu, J. Y. Lee and J. Xie, ACS Nano, 2012, 6, 7920–7927 CrossRef CAS PubMed.
  365. Z. Wu, J. Chen and R. Jin, Adv. Funct. Mater., 2011, 21, 177–183 CrossRef CAS.
  366. C. E. Angevine, A. E. Chavis, N. Kothalawala, A. Dass and J. E. Reiner, Anal. Chem., 2014, 86, 11077–11085 CrossRef CAS.
  367. J. Hassinen, P. Pulkkinen, E. Kalenius, T. Pradeep, H. Tenhu, H. Häkkinen and R. H. A. Ras, J. Phys. Chem. Lett., 2014, 5, 585–589 CrossRef CAS.
  368. A. Ghosh, J. Hassinen, P. Pulkkinen, H. Tenhu, R. H. A. Ras and T. Pradeep, Anal. Chem., 2014, 86, 12185–12190 CrossRef CAS.
  369. Q. Yao, X. Yuan, Y. Yu, Y. Yu, J. Xie and J. Y. Lee, J. Am. Chem. Soc., 2015, 137, 2128–2136 CrossRef CAS PubMed.
  370. J. Yoshimoto, A. Sangsuwan, I. Osaka, K. Yamashita, Y. Iwasaki, M. Inada, R. Arakawa and H. Kawasaki, J. Phys. Chem. C, 2015, 119, 14319–14325 CrossRef CAS.
  371. A. Mathew, E. Varghese, S. Choudhury, S. K. Pal and T. Pradeep, Nanoscale, 2015, 7, 14305–14315 RSC.
  372. S. Bhat, R. P. Narayanan, A. Baksi, P. Chakraborty, G. Paramasivam, R. R. J. Methikkalam, A. Nag, G. Natarajan and T. Pradeep, J. Phys. Chem. C, 2018, 122, 19455–19462 CrossRef CAS.
  373. Y. Wang and T. Bürgi, Nanoscale, 2022, 14, 2456–2464 RSC.
  374. M. Swierczewski, F. Cousin, E. Banach, A. Rosspeintner, L. M. Lawson Daku, A. Ziarati, R. Kazan, G. Jeschke, R. Azoulay, L. T. Lee and T. Bürgi, Angew. Chem., Int. Ed., 2023, 62, e202215746 CrossRef CAS PubMed.
  375. X. Luo, J. Kong, H. Xiao, D. Sang, K. He, M. Zhou and J. Liu, Angew. Chem., Int. Ed., 2024, 63, e202404129 CrossRef CAS PubMed.
  376. J. Sen Yang, Y. J. Zhao, X. M. Li, X. Y. Dong, Y. B. Si, L. Y. Xiao, J. H. Hu, Z. Yu and S. Q. Zang, Angew. Chem., Int. Ed., 2024, 63, e202318030 CrossRef PubMed.
  377. C. Zhou, M. Wang, Q. Yao, Y. Zhou, C. Hou, J. Xia, Z. Wang, J. Chen and J. Xie, Aggregate, 2023, 5, e401 CrossRef.
  378. Y. Y. Dong, C. Y. Liu, W. Q. Shi, Z. J. Guan and Q. M. Wang, Angew. Chem., Int. Ed., 2025, 64, e202420314 CrossRef CAS PubMed.
  379. T. Gregory Schaaff and R. L. Whetten, J. Phys. Chem. B, 2000, 104, 2630–2641 CrossRef.
  380. Y. Wang, B. Nieto-Ortega and T. Bürgi, Chem. Commun., 2019, 55, 14914–14917 RSC.
  381. W. Q. Shi, L. Zeng, Z. C. Long, Z. J. Guan, X. S. Han, F. Hu, M. Zhou and Q. M. Wang, J. Phys. Chem. Lett., 2025, 16, 2204–2211 CrossRef CAS PubMed.
  382. S. F. Yuan, R. L. He, X. S. Han, J. Q. Wang, Z. J. Guan and Q. M. Wang, Angew. Chem., Int. Ed., 2021, 60, 14345–14349 CrossRef CAS PubMed.
  383. J. Wang, Z. Y. Wang, S. J. Li, S. Q. Zang and T. C. W. Mak, Angew. Chem., Int. Ed., 2021, 60, 5959–5964 CrossRef CAS PubMed.
  384. J. Dong, Z. Gan, W. Gu, Q. You, Y. Zhao, J. Zha, J. Li, H. Deng, N. Yan and Z. Wu, Angew. Chem., Int. Ed., 2021, 60, 17932–17936 CrossRef CAS PubMed.
  385. Y. Yu, Q. Yao, K. Cheng, X. Yuan, Z. Luo and J. Xie, Part. Part. Syst. Charact., 2014, 31, 652–656 CrossRef CAS.
  386. P. J. Krommenhoek, J. Wang, N. Hentz, A. C. Johnston-Peck, K. A. Kozek, G. Kalyuzhny and J. B. Tracy, ACS Nano, 2012, 6, 4903–4911 CrossRef CAS PubMed.
  387. D. Crasto and A. Dass, J. Phys. Chem. C, 2013, 117, 22094–22097 CrossRef CAS.
  388. D. Crasto, S. Malola, G. Brosofsky, A. Dass and H. Häkkinen, J. Am. Chem. Soc., 2014, 136, 5000–5005 CrossRef CAS PubMed.
  389. X. K. Wan, T. T. Liu, N. L. Li, Q. Dai, J. Wei and Q. M. Wang, ACS Nano, 2025, 19, 11371–11380 CrossRef CAS PubMed.
  390. P. R. Nimmala and A. Dass, J. Am. Chem. Soc., 2011, 133, 9175–9177 CrossRef CAS PubMed.
  391. C. Zeng, H. Qian, T. Li, G. Li, N. L. Rosi, B. Yoon, R. N. Barnett, R. L. Whetten, U. Landman and R. Jin, Angew. Chem., Int. Ed., 2012, 51, 13114–13118 CrossRef CAS PubMed.
  392. M. Sakamoto, Y. Mizuhata, W. Ota, T. Konishi, H. Tahara, K. Kamada and T. Sato, J. Am. Chem. Soc., 2025, 147, 23451–23457 CrossRef CAS PubMed.
  393. Y. Y. Lin, Z. A. Nan, Z. Lei and Q. M. Wang, Nanoscale, 2025, 17, 8724–8730 RSC.
  394. X. Wan, Z. Guan and Q. Wang, Angew. Chem., 2017, 129, 11652–11655 CrossRef.
  395. Y. Tan, K. Li, J. Xu, Q. Li, S. Yang, J. Chai, Y. Pei, D. Jia and M. Zhu, Nanoscale, 2024, 16, 15663–15669 RSC.
  396. J. Kim, K. Lema, M. Ukaigwe and D. Lee, Langmuir, 2007, 23, 7853–7858 CrossRef CAS PubMed.
  397. D. Stellwagen, A. Weber, G. L. Bovenkamp, R. Jin, J. H. Bitter and C. S. S. R. Kumar, RSC Adv., 2012, 2, 2276–2283 RSC.
  398. H. Qian, M. Zhu, U. N. Andersen and R. Jin, J. Phys. Chem. A, 2009, 113, 4281–4284 CrossRef CAS PubMed.
  399. S. Knoppe, A. C. Dharmaratne, E. Schreiner, A. Dass and T. Bürgi, J. Am. Chem. Soc., 2010, 132, 16783–16789 CrossRef CAS PubMed.
  400. Y. Negishi, K. Igarashi, K. Munakata, W. Ohgake and K. Nobusada, Chem. Commun., 2012, 48, 660–662 RSC.
  401. S. Knoppe, J. Boudon, I. Dolamic, A. Dass and T. Bürgi, Anal. Chem., 2011, 83, 5056–5061 CrossRef CAS PubMed.
  402. H. Qian, Y. Zhu and R. Jin, ACS Nano, 2009, 3, 3795–3803 CrossRef CAS PubMed.
  403. O. Toikkanen, S. Carlsson, A. Dass, G. Rönnholm, N. Kalkkinen and B. M. Quinn, J. Phys. Chem. Lett., 2010, 1, 32–37 CrossRef CAS.
  404. O. Toikkanen, V. Ruiz, G. Rönnholm, N. Kalkkinen, P. Liljeroth and B. M. Quinn, J. Am. Chem. Soc., 2008, 130, 11049–11055 CrossRef CAS PubMed.
  405. S. Gaur, J. T. Miller, D. Stellwagen, A. Sanampudi, C. S. S. R. Kumar and J. J. Spivey, Phys. Chem. Chem. Phys., 2012, 14, 1627–1634 RSC.
  406. H. Qian, Y. Zhu and R. Jin, J. Am. Chem. Soc., 2010, 132, 4583–4585 CrossRef CAS PubMed.
  407. S. Knoppe, I. Dolamic, A. Dass and T. Bürgi, Angew. Chem., Int. Ed., 2012, 51, 7589–7591 CrossRef CAS PubMed.
  408. J. Li, Z. Wang, J. Ye, Q. Li, S. Yang, J. Chai and M. Zhu, Chem. Commun., 2025, 61, 5146–5149 RSC.
  409. J. I. Nishigaki, R. Tsunoyama, H. Tsunoyama, N. Ichikuni, S. Yamazoe, Y. Negishi, M. Ito, T. Matsuo, K. Tamao and T. Tsukuda, J. Am. Chem. Soc., 2012, 134, 14295–14297 CrossRef CAS PubMed.
  410. S. Zhuang, L. Liao, J. Yuan, N. Xia, Y. Zhao, C. Wang, Z. Gan, N. Yan, L. He, J. Li, H. Deng, Z. Guan, J. Yang and Z. Wu, Angew. Chem., 2019, 131, 4558–4562 CrossRef.
  411. H. W. Luyang, C. Q. Xu, S. F. Yuan, J. Li and Q. M. Wang, Angew. Chem., Int. Ed., 2025, 64, e202417904 CrossRef CAS PubMed.
  412. Z. J. Guan, F. Hu, J. J. Li, Z. R. Liu and Q. M. Wang, Nanoscale, 2020, 12, 13346–13350 RSC.
  413. P. Maity, H. Tsunoyama, M. Yamauchi, S. Xie and T. Tsukuda, J. Am. Chem. Soc., 2011, 133, 20123–20125 CrossRef CAS PubMed.
  414. L. Liao, S. Zhuang, P. Wang, Y. Xu, N. Yan, H. Dong, C. Wang, Y. Zhao, N. Xia, J. Li, H. Deng, Y. Pei, S. Tian and Z. Wu, Angew. Chem., 2017, 129, 12818–12822 CrossRef.
  415. P. Maity, T. Wakabayashi, N. Ichikuni, H. Tsunoyama, S. Xie, M. Yamauchi and T. Tsukuda, Chem. Commun., 2012, 48, 6085–6087 RSC.
  416. H. Tsunoyama, Y. Negishi and T. Tsukuda, J. Am. Chem. Soc., 2006, 128, 6036–6037 CrossRef CAS PubMed.
  417. R. Tsunoyama, H. Tsunoyama, P. Pannopard, J. Limtrakul and T. Tsukuda, J. Phys. Chem. C, 2010, 114, 16004–16009 CrossRef CAS.
  418. H. Qian and R. Jin, Chem. Commun., 2011, 47, 11462–11464 RSC.
  419. X. K. Wan, J. Q. Wang and Q. M. Wang, Angew. Chem., Int. Ed., 2021, 60, 20748–20753 CrossRef CAS PubMed.
  420. Y. Song, F. Fu, J. Zhang, J. Chai, X. Kang, P. Li, S. Li, H. Zhou and M. Zhu, Angew. Chem., 2015, 127, 8550–8554 CrossRef.
  421. C. Zeng, Y. Chen, G. Li and R. Jin, Chem. Mater., 2014, 26, 2635–2641 CrossRef CAS.
  422. P. R. Nimmala, B. Yoon, R. L. Whetten, U. Landman and A. Dass, J. Phys. Chem. A, 2013, 117, 504–517 CrossRef CAS PubMed.
  423. O. J. H. Chai and J. Xie, J. Phys. Chem. Lett., 2024, 15, 5137–5142 CrossRef CAS PubMed.
  424. A. Dass, J. Am. Chem. Soc., 2009, 131, 11666–11667 CrossRef CAS PubMed.
  425. R. Balasubramanian, R. Guo, A. J. Mills and R. W. Murray, J. Am. Chem. Soc., 2005, 127, 8126–8132 CrossRef CAS.
  426. S. Takano, S. Yamazoe, K. Koyasu and T. Tsukuda, J. Am. Chem. Soc., 2015, 137, 7027–7030 CrossRef CAS.
  427. W. Wang, D. Chen, V. Fung, S. Zhuang, Y. Zhou, C. Wang, G. Bian, Y. Zhao, N. Xia, J. Li, H. Deng, L. Liao, J. Yang, D. en Jiang and Z. Wu, Angew. Chem., Int. Ed., 2025, 64, e202410109 CrossRef CAS.
  428. L. Liao, J. Chen, C. Wang, S. Zhuang, N. Yan, C. Yao, N. Xia, L. Li, X. Bao and Z. Wu, Chem. Commun., 2016, 52, 12036–12039 RSC.
  429. C. Zeng, C. Liu, Y. Chen, N. L. Rosi and R. Jin, J. Am. Chem. Soc., 2016, 138, 8710–8713 CrossRef CAS PubMed.
  430. J. J. Li, Z. Liu, Z. J. Guan, X. S. Han, W. Q. Shi and Q. M. Wang, J. Am. Chem. Soc., 2022, 144, 690–694 CrossRef CAS PubMed.
  431. P. R. Nimmala and A. Dass, J. Am. Chem. Soc., 2014, 136, 17016–17023 CrossRef CAS PubMed.
  432. X. Du, T. Higaki, H. Ma, X. Zhang, G. Wang, H. Wang and R. Jin, Nanoscale, 2025, 17, 14408–14414 RSC.
  433. Y. Levi-Kalisman, P. D. Jadzinsky, N. Kalisman, H. Tsunoyama, T. Tsukuda, D. A. Bushnell and R. D. Kornberg, J. Am. Chem. Soc., 2011, 133, 2976–2982 CrossRef CAS.
  434. D. M. Black, M. M. Alvarez, F. Yan, W. P. Griffith, G. Plascencia-Villa, S. B. H. Bach and R. L. Whetten, J. Phys. Chem. C, 2017, 121, 10851–10857 CrossRef CAS.
  435. Y. Chen, J. Wang, C. Liu, Z. Li and G. Li, Nanoscale, 2016, 8, 10059–10065 RSC.
  436. N. A. Sakthivel, L. Sementa, B. Yoon, U. Landman, A. Fortunelli and A. Dass, J. Phys. Chem. C, 2020, 124, 1655–1666 CrossRef CAS.
  437. T. Higaki, C. Liu, M. Zhou, T. Y. Luo, N. L. Rosi and R. Jin, J. Am. Chem. Soc., 2017, 139, 9994–10001 CrossRef CAS PubMed.
  438. A. Dass, P. R. Nimmala, V. R. Jupally and N. Kothalawala, Nanoscale, 2013, 5, 12082–12085 RSC.
  439. J. J. Li, Z. J. Guan, S. F. Yuan, F. Hu and Q. M. Wang, Angew. Chem., Int. Ed., 2021, 60, 6699–6703 CrossRef CAS PubMed.
  440. J. Q. Wang, S. Shi, R. L. He, S. F. Yuan, G. Y. Yang, G. J. Liang and Q. M. Wang, J. Am. Chem. Soc., 2020, 142, 18086–18092 CrossRef CAS PubMed.
  441. G. Bian, D. Chen, Y. Chen, W. Zhang, L. Fang, Q. You, R. Wang, W. Gu, Y. Zhou, N. Yan, S. Zhuang, S. Ji, M. Zhou, C. Wang, L. Liao, Q. Tang, J. Yang and Z. Wu, Sci. Adv., 2025, 11, eadu1996 CrossRef CAS PubMed.
  442. X. Ren, X. Fu, X. Lin, C. Liu, J. Huang and J. Yan, Chem. Res. Chin. Univ., 2018, 34, 719–722 CrossRef CAS.
  443. Y. Negishi, C. Sakamoto, T. Ohyama and T. Tsukuda, J. Phys. Chem. Lett., 2012, 3, 1624–1628 CrossRef CAS PubMed.
  444. Z. Lei, P. Zhao, Z. J. Guan, Z. A. Nan, M. Ehara and Q. M. Wang, Chem. – Eur. J., 2024, 30, e202401094 CrossRef CAS.
  445. X. Du, X. Zhang, H. Ma, M. Zhou, T. Higaki, G. Wang, H. Wang and R. Jin, ChemElectroChem, 2024, 11, e202300528 CrossRef CAS.
  446. Y. Negishi, T. Nakazaki, S. Malola, S. Takano, Y. Niihori, W. Kurashige, S. Yamazoe, T. Tsukuda and H. Häkkinen, J. Am. Chem. Soc., 2015, 137, 1206–1212 CrossRef CAS PubMed.
  447. V. R. Jupally, A. C. Dharmaratne, D. Crasto, A. J. Huckaba, C. Kumara, P. R. Nimmala, N. Kothalawala, J. H. Delcamp and A. Dass, Chem. Commun., 2014, 50, 9895–9898 RSC.
  448. L. J. Liu, F. Alkan, S. Zhuang, D. Liu, T. Nawaz, J. Guo, X. Luo and J. He, Nat. Commun., 2023, 14, 2397 CrossRef CAS PubMed.
  449. T. G. Schaaff, M. N. Shafigullin, J. T. Khoury, I. Vezmar and R. L. Whetten, J. Phys. Chem. B, 2001, 105, 8785–8796 CrossRef CAS.
  450. Z. Lei, J. Li, X. Wan, W. Zhang and Q. Wang, Angew. Chem., 2018, 130, 8775–8779 CrossRef.
  451. H. Qian and R. Jin, Chem. Mater., 2011, 23, 2209–2217 CrossRef CAS.
  452. X. Ma, Z. Tang, L. Qin, J. Peng, L. Li and S. Chen, Nanoscale, 2020, 12, 2980–2986 RSC.
  453. T. Dainese, S. Antonello, S. Bonacchi, D. Morales-Martinez, A. Venzo, D. M. Black, M. Mozammel Hoque, R. L. Whetten and F. Maran, Nanoscale, 2021, 13, 15394–15402 RSC.
  454. S. Vergara, D. A. Lukes, M. W. Martynowycz, U. Santiago, G. Plascencia-Villa, S. C. Weiss, M. J. De La Cruz, D. M. Black, M. M. Alvarez, X. López-Lozano, C. O. Barnes, G. Lin, H. C. Weissker, R. L. Whetten, T. Gonen, M. J. Yacaman and G. Calero, J. Phys. Chem. Lett., 2017, 8, 5523–5530 CrossRef CAS PubMed.
  455. F. Hu, Z. J. Guan, G. Yang, J. Q. Wang, J. J. Li, S. F. Yuan, G. J. Liang and Q. M. Wang, J. Am. Chem. Soc., 2021, 143, 17059–17067 CrossRef CAS.
  456. N. A. Sakthivel, M. Shabaninezhad, L. Sementa, B. Yoon, M. Stener, R. L. Whetten, G. Ramakrishna, A. Fortunelli, U. Landman and A. Dass, J. Am. Chem. Soc., 2020, 142, 15799–15814 CrossRef CAS.
  457. M. Zhou, C. Zeng, Y. Song, J. W. Padelford, G. Wang, M. Y. Sfeir, T. Higaki and R. Jin, Angew. Chem., 2017, 129, 16475–16479 CrossRef.
  458. C. Kumara, X. Zuo, J. Ilavsky, D. Cullen and A. Dass, J. Phys. Chem. C, 2015, 119, 11260–11266 CrossRef CAS.
  459. K. Kwak, V. D. Thanthirige, K. Pyo, D. Lee and G. Ramakrishna, J. Phys. Chem. Lett., 2017, 8, 4898–4905 CrossRef CAS PubMed.
  460. L. Zhang, R. Guo, C. Fang, D. Kong, D. Lv and X. Sun, J. Phys. Chem. A, 2025, 129, 4892–4902 CrossRef CAS PubMed.
  461. S. Duary, A. Jana, A. Das, S. Acharya, A. R. Kini, J. Roy, A. K. Poonia, D. K. Patel, V. Yadav, P. K. S. Antharjanam, B. Pathak, A. Kumaran Nair Valsala Devi and T. Pradeep, Inorg. Chem., 2024, 63, 18727–18737 CrossRef CAS PubMed.
  462. X. H. Gao, S. J. He, C. M. Zhang, C. Du, X. Chen, W. Xing, S. L. Chen, A. Clayborne and W. Chen, Adv. Sci., 2016, 3, 1600126 CrossRef.
  463. B. Mondal, K. Basu, R. Jana, P. Mondal, B. Hansda, A. Datta and A. Banerjee, ACS Appl. Nano Mater., 2022, 5, 7932–7943 CrossRef CAS.
  464. M. L. Fu, D. Fenske, B. Weinert and O. Fuhr, Eur. J. Inorg. Chem., 2010, 2010, 1098–1102 CrossRef.
  465. A. Avdeef and J. P. Fackler Jr., Inorg. Chem., 1978, 8, 2182–2187 CrossRef.
  466. J. F. Corrigan and D. Fenske, Angew. Chem., Int. Ed. Engl., 1997, 36, 1981–1983 CrossRef CAS.
  467. R. Gupta, S. Agrawal, S. Rai, J. Sarkar, S. Kumari, D. Shil and S. Mukherjee, ACS Appl. Opt. Mater., 2024, 2, 1880–1890 CrossRef CAS.
  468. S. Duary, A. Jana, A. Das, A. Sharma, B. Pathak, K. N. V. D. Adarsh and T. Pradeep, Inorg. Chem., 2025, 64, 11001–11011 CrossRef CAS PubMed.
  469. M. Chang, Y. Xu, Y. Lv, H. Yu, H. Li, X. Kang and M. Zhu, Chem. Commun., 2025, 61, 11215–11218 RSC.
  470. A. Eichhöfer, J. F. Corrigan, D. Fenske and E. Tröster, Z. Anorg. Allg. Chem., 2000, 626, 338–348 CrossRef.
  471. C. Y. Liu, S. F. Yuan, S. Wang, Z. J. Guan, D. en Jiang and Q. M. Wang, Nat. Commun., 2022, 13, 2082 CrossRef CAS PubMed.
  472. M. J. Trenerry and G. A. Bailey, Nanoscale, 2024, 16, 16048–16057 RSC.
  473. M. W. DeGroot, M. W. Cockburn, M. S. Workentin and J. F. Corrigan, Inorg. Chem., 2001, 40, 4678–4685 CrossRef CAS PubMed.
  474. S. Dehnen, A. Schäfer, D. Fenske and R. Ahlrichs, Angew. Chem., Int. Ed. Engl., 1994, 33, 746–749 CrossRef.
  475. A. Jana, S. Duary, A. Das, A. R. Kini, S. Acharya, J. Machacek, B. Pathak, T. Base and T. Pradeep, Chem. Sci., 2024, 15, 13741–13752 RSC.
  476. J. Zhu, R. Zhao, H. Shen, C. Zhu, M. Zhou, X. Kang and M. Zhu, Aggregate, 2024, 6, e720 CrossRef.
  477. A. K. Das, S. Hegde, T. J. Woods, V. S. Wani and M. P. Backlund, Nano Lett., 2025, 25, 7491–7498 CrossRef CAS.
  478. M. Oyebanji, L. Chen, R. Qian, M. Tu, Q. Zhang, X. Yang, H. Yu and M. Zhu, Anal. Methods, 2024, 16, 6688–6695 RSC.
  479. S. Nematulloev, R. W. Huang, J. Yin, A. Shkurenko, C. Dong, A. Ghosh, B. Alamer, R. Naphade, M. N. Hedhili, P. Maity, M. Eddaoudi, O. F. Mohammed and O. M. Bakr, Small, 2021, 17, e2006839 CrossRef PubMed.
  480. A. Nag, A. M. Butt, M. Y. Yang, P. B. Managutti, B. M. Pirzada, M. I. H. Mohideen, A. L. Abdelhady, M. A. Haija, S. Mohamed, B. V. Merinov, W. A. Goddard and A. Qurashi, ACS Mater. Lett., 2025, 7, 442–449 CrossRef CAS PubMed.
  481. C. Zhang, W. D. Si, Z. Wang, A. Dinesh, Z. Y. Gao, C. H. Tung and D. Sun, J. Am. Chem. Soc., 2024, 146, 10767–10775 CrossRef CAS.
  482. C. Y. Liu, T. Y. Liu, Z. J. Guan, S. Wang, Y. Y. Dong, F. Hu, D. E. Jiang and Q. M. Wang, CCS Chem., 2024, 6, 1581–1590 CrossRef CAS.
  483. S. Biswas, Y. Shingyouchi, M. Kamiyama, M. Ogami, H. Song, B. Li, S. Wang, T. Kawawaki, D. E. Jiang and Y. Negishi, J. Am. Chem. Soc., 2025, 147, 23733–23742 CrossRef CAS PubMed.
  484. R. W. Huang, J. Yin, C. Dong, P. Maity, M. N. Hedhili, S. Nematulloev, B. Alamer, A. Ghosh, O. F. Mohammed and O. M. Bakr, ACS Mater. Lett., 2021, 3, 90–99 CrossRef CAS.
  485. T. A. D. Nguyen, Z. R. Jones, B. R. Goldsmith, W. R. Buratto, G. Wu, S. L. Scott and T. W. Hayton, J. Am. Chem. Soc., 2015, 137, 13319–13324 CrossRef CAS PubMed.
  486. R. P. B. Silalahi, J. H. Liao, Y. F. Tseng, T. H. Chiu, S. Kahlal, J. Y. Saillard and C. W. Liu, Dalton Trans., 2023, 52, 2106–2114 RSC.
  487. X. Sun, B. Yan, X. Gong, Q. Xu, Q. Guo and H. Shen, Chem. – Eur. J., 2024, 30, e202400527 CrossRef CAS PubMed.
  488. S. Zheng, D. H. Si, H. Guo, Q. J. Wu, H. J. Zhu, Y. B. Huang and R. Cao, ACS Nano, 2025, 19, 24130–24139 Search PubMed.
  489. S. Lee, M. S. Bootharaju, G. Deng, S. Malola, W. Baek, H. Häkkinen, N. Zheng and T. Hyeon, J. Am. Chem. Soc., 2020, 142, 13974–13981 CrossRef CAS PubMed.
  490. S. Maity, D. Bain and A. Patra, J. Phys. Chem. C, 2019, 123, 2506–2515 Search PubMed.
  491. H. Wang, C. L. Lin, E. Fan, H. T. Yin, S. Zhang, Y. Zhao, M. B. Li and Z. Wu, ACS Nano, 2025, 19, 25295–25303 Search PubMed.
  492. H. Zhao, C. Zhang, B. L. Han, P. Mahato, C. Z. Yang, P. X. Yu, Z. Wang, C. H. Tung and D. Sun, Nano Lett., 2025, 25, 9132–9138 CrossRef CAS PubMed.
  493. J. Sun, X. Tang, X. Yan, W. Jing, Z. Xie, H. Wang, Chaolumen, J. He and H. Shen, Next Mater., 2024, 3, 100091 Search PubMed.
  494. J. Sun, J. Liu, H. F. Su, S. Li, X. Tang, Z. Xie, Z. Xu, W. Jiang, J. Wei, X. Gong, A. He, S. Wang, D. E. Jiang, N. Zheng and H. Shen, Chem. Sci., 2025, 16, 6392–6401 Search PubMed.
  495. J. Sun, X. Tang, Z. H. Liu, Z. Xie, B. Yan, R. Yin, C. Chaolumen, J. Zhang, W. Fang, J. Wei and H. Shen, ACS Mater. Lett., 2024, 6, 281–289 CrossRef CAS.
  496. A. Ghosh, R. W. Huang, B. Alamer, E. Abou-Hamad, M. N. Hedhili, O. F. Mohammed and O. M. Bakr, ACS Mater. Lett., 2019, 1, 297–302 CrossRef CAS.
  497. R. W. Huang, J. Yin, C. Dong, A. Ghosh, M. J. Alhilaly, X. Dong, M. N. Hedhili, E. Abou-Hamad, B. Alamer, S. Nematulloev, Y. Han, O. F. Mohammed and O. M. Bakr, J. Am. Chem. Soc., 2020, 142, 8696–8705 CrossRef PubMed.
  498. M. L. Fu, I. Issac, D. Fenske and O. Fuhr, Angew. Chem., Int. Ed., 2010, 49, 6899–6903 CrossRef CAS PubMed.
  499. H. Yamamoto, P. Maity, R. Takahata, S. Yamazoe, K. Koyasu, W. Kurashige, Y. Negishi and T. Tsukuda, J. Phys. Chem. C, 2017, 121, 10936–10941 CrossRef CAS.
  500. A. W. Cook, P. Hrobárik, P. L. Damon, G. Wu and T. W. Hayton, Inorg. Chem., 2020, 59, 1471–1480 Search PubMed.
  501. Q. You, X. L. Jiang, W. Fan, Y. S. Cui, Y. Zhao, S. Zhuang, W. Gu, L. Liao, C. Q. Xu, J. Li and Z. Wu, Angew. Chem., Int. Ed., 2024, 63, e202313491 CrossRef CAS PubMed.
  502. X. Wang, L. Zhao, X. Li, Y. Liu, Y. Wang, Q. Yao, J. Xie, Q. Xue, Z. Yan, X. Yuan and W. Xing, Nat. Commun., 2022, 13, 1–10 Search PubMed.
  503. K. Oiwa, K. Ikeda, R. Kurosaki, K. Sato, N. Nishi, H. Tachibana, M. A. Haque, T. Kawawaki, K. Iida and Y. Negishi, J. Mater. Chem. A, 2025, 13, 12124–12132 Search PubMed.
  504. R. Wang, D. Chen, L. Fang, W. Fan, Q. You, G. Bian, Y. Zhou, W. Gu, C. Wang, L. Bai, J. Li, H. Deng, L. Liao, J. Yang and Z. Wu, Angew. Chem., Int. Ed., 2024, 63, e202402565 Search PubMed.
  505. H. Seong, Y. Jo, V. Efremov, Y. Kim, S. Park, S. M. Han, K. Chang, J. Park, W. Choi, W. Kim, C. H. Choi, J. S. Yoo and D. Lee, J. Am. Chem. Soc., 2023, 145, 2152–2160 CrossRef CAS PubMed.
  506. S. R. Biltek, S. Mandal, A. Sen, A. C. Reber, A. F. Pedicini and S. N. Khanna, J. Am. Chem. Soc., 2013, 135, 26–29 CrossRef CAS PubMed.
  507. A. Devi, H. Seksaria, D. Bain, S. Kolay, N. Rashi, A. De Sarkar and A. Patra, Phys. Chem. Chem. Phys., 2023, 25, 9513–9521 Search PubMed.
  508. H. Seong, Y. Jo, V. Efremov, Y. Kim, S. Park, S. M. Han, K. Chang, J. Park, W. Choi, W. Kim, C. H. Choi, J. S. Yoo and D. Lee, J. Am. Chem. Soc., 2023, 145, 2152–2160 Search PubMed.
  509. Y. Yun, K. Zhu, Z.-Y. Wei, T. Guo, S. Lin, T. Li, L. Li, X. Sun, S.-X. Hu, H. Sheng and M. Zhu, Appl. Catal., B, 2025, 368, 125121 CrossRef CAS.
  510. Y. K. Lv, Y. Han, K. Wang, W. Y. Sun, C. X. Du, R. W. Huang, P. Peng and S. Q. Zang, ACS Nano, 2024, 18, 32186–32195 Search PubMed.
  511. J. Chen, L. Liu, X. Liu, L. Liao, S. Zhuang, S. Zhou, J. Yang and Z. Wu, Chem. – Eur. J., 2017, 23, 18187–18192 CrossRef CAS PubMed.
  512. S. Hossain, Y. Imai, Y. Motohashi, Z. Chen, D. Suzuki, T. Suzuki, Y. Kataoka, M. Hirata, T. Ono, W. Kurashige, T. Kawawaki, T. Yamamoto and Y. Negishi, Mater. Horiz., 2020, 7, 796–803 RSC.
  513. L. Chen, Y. Du, Y. Lv, D. Fan, J. Wu, L. Wu, M. Cui, H. Yu and M. Zhu, Nano Res., 2023, 16, 7770–7776 Search PubMed.
  514. M. Zhou, S. Jin, X. Wei, Q. Yuan, S. Wang, Y. Du and M. Zhu, J. Phys. Chem. C, 2020, 124, 7531–7538 CrossRef CAS.
  515. Y. Yang, S. Guo, Q. Zhang, Z.-J. Guan and Q.-M. Wang, Angew. Chem., Int. Ed., 2024, 63, e202404798 Search PubMed.
  516. S. Jin, W. Liu, D. Hu, X. Zou, X. Kang, W. Du, S. Chen, S. Wei, S. Wang and M. Zhu, Chem. – Eur. J., 2018, 24, 3712–3715 Search PubMed.
  517. K. Hirata, P. Chakraborty, A. Nag, S. Takano, K. Koyasu, T. Pradeep and T. Tsukuda, J. Phys. Chem. C, 2018, 122, 23123–23128 Search PubMed.
  518. T. Imagawa, S. Ito, F. Hennrich, M. Neumaier, P. Weis, K. Koyasu, M. M. Kappes and T. Tsukuda, J. Chem. Phys., 2024, 161, 024303 Search PubMed.
  519. W. Sun, S. Jin, W. Du, X. Kang, A. Chen, S. Wang, H. Sheng and M. Zhu, Eur. J. Inorg. Chem., 2020, 2020, 590–594 Search PubMed.
  520. Z. Qin, D. Zhao, L. Zhao, Q. Xiao, T. Wu, J. Zhang, C. Wan and G. Li, Nanoscale Adv., 2019, 1, 2529–2536 Search PubMed.
  521. R. P. B. Silalahi, S. Kahlal, J. Y. Saillard and C. W. Liu, Molecules, 2024, 29, 4427 Search PubMed.
  522. T. Udayabhaskararao, Y. Sun, N. Goswami, S. K. Pal, K. Balasubramanian and T. Pradeep, Angew. Chem., Int. Ed., 2012, 51, 2155–2159 Search PubMed.
  523. X. Kang and M. Zhu, Chem. Soc. Rev., 2019, 48, 2422–2457 RSC.
  524. R. C. B. Copley and D. M. P. Mingos, J. Chem. Soc., Dalton Trans., 1996, 4, 491–500 RSC.
  525. H. Liu, K. Li, F. Li, Y. Zhao, W. Fan, Y. Pei and M.-B. Li, Chin. Chem. Lett., 2025, 111230 Search PubMed.
  526. A. Ma, Y. Ren, Y. Zuo, J. Zhao, S. Zhang, X. Ma and S. Wang, Chem. Commun., 2025, 61, 10772–10775 Search PubMed.
  527. Y. R. Ni, R. T. Pangal, M. N. Pillay, T. H. Chiu, S. Kahlal, J. Y. Saillard and C. W. Liu, Molecules, 2025, 30, 404 CrossRef CAS PubMed.
  528. B. Yin, J. Kong, M. Guo, J. Kong, Q. You, M. Zhou and Z. Luo, Small, 2025, 21, e2504958 Search PubMed.
  529. J. Q. Wang, R. L. He, W. Di Liu, Q. Y. Feng, Y. E. Zhang, C. Y. Liu, J. X. Ge and Q. M. Wang, J. Am. Chem. Soc., 2023, 145, 12255–12263 CrossRef CAS PubMed.
  530. Z. R. Wen, Z. J. Guan, Y. Zhang, Y. M. Lin and Q. M. Wang, Chem. Commun., 2019, 55, 12992–12995 RSC.
  531. J. H. Huang, H. Zhang, Z. Y. Wang, J. H. Hu, J. Li, J. Cai and S. Q. Zang, J. Am. Chem. Soc., 2025, 147, 16593–16601 Search PubMed.
  532. W. Zhang, T. Xu, J. Kong, Y. Li, X. Zhou, J. Zhang, Q. Zhang, Y. Song, Y. Luo and M. Zhou, Chem. Sci., 2025, 16, 8910–8921 Search PubMed.
  533. M. Kim, S. Park, M. Kim, S. Kim, J. Seo and S. S. Park, Nano Lett., 2025, 25, 9110–9117 Search PubMed.
  534. X. Kang, L. Xiong, S. Wang, Y. Pei and M. Zhu, Inorg. Chem., 2018, 57, 335–342 Search PubMed.
  535. Y. Feng, Y. Lv, X. Wei, H. Yu, X. Kang and M. Zhu, J. Phys. Chem. Lett., 2024, 15, 8910–8916 CrossRef CAS PubMed.
  536. X. Kang, C. Silalai, Y. Lv, G. Sun, S. Chen, H. Yu, F. Xu and M. Zhu, Eur. J. Inorg. Chem., 2017, 10, 1414–1419 CrossRef.
  537. R. Saito, K. Isozaki, Y. Mizuhata and M. Nakamura, J. Am. Chem. Soc., 2024, 146, 20930–20936 CrossRef CAS PubMed.
  538. Y. R. Lin, P. V. V. N. Kishore, J. H. Liao, S. Kahlal, Y. C. Liu, M. H. Chiang, J. Y. Saillard and C. W. Liu, Nanoscale, 2018, 10, 6855–6860 Search PubMed.
  539. Y. Zhou, W. Gu, R. Wang, W. Zhu, Z. Hu, W. Fei, S. Zhuang, J. Li, H. Deng, N. Xia, J. He and Z. Wu, Nano Lett., 2024, 24, 2226–2233 CrossRef CAS PubMed.
  540. W. J. Yen, J. H. Liao, T. H. Chiu, Y. S. Wen and C. W. Liu, Inorg. Chem., 2022, 61, 6695–6700 CrossRef CAS PubMed.
  541. S. Jin, F. Xu, W. Du, X. Kang, S. Chen, J. Zhang, X. Li, D. Hu, S. Wang and M. Zhu, Inorg. Chem., 2018, 57, 5114–5119 Search PubMed.
  542. S. Yang, J. Chai, Y. Song, J. Fan, T. Chen, S. Wang, H. Yu, X. Li and M. Zhu, J. Am. Chem. Soc., 2017, 139, 5668–5671 Search PubMed.
  543. W.-Q. Shi, L. Zeng, R.-L. He, X.-S. Han, Z.-J. Guan, M. Zhou and Q.-M. Wang, Science, 2024, 383, 326–330 Search PubMed.
  544. W. Liu, H. Wang, X. Zhang, Q. Li, J. Chai, S. Yang and M. Zhu, Small Methods, 2025, 9, e2500044 Search PubMed.
  545. W. W. Jia, Y. Dai, L. L. Zeng, Z. C. Long, W. Q. Shi, M. Zhou, J. Qiao and Q. M. Wang, Angew. Chem., Int. Ed., 2025, 64, e202508578 Search PubMed.
  546. S. Chen, W. Du, C. Qin, D. Liu, L. Tang, Y. Liu, S. Wang and M. Zhu, Angew. Chem., 2020, 132, 7612–7617 CrossRef.
  547. C. Liu, X. Ren, F. Lin, X. Fu, X. Lin, T. Li, K. Sun and J. Huang, Angew. Chem., 2019, 131, 11457–11461 CrossRef.
  548. Q. Li, M. G. Taylor, K. Kirschbaum, K. J. Lambright, X. Zhu, G. Mpourmpakis and R. Jin, J. Colloid Interface Sci., 2017, 505, 1202–1207 CrossRef CAS PubMed.
  549. C. Kumara, C. M. Aikens and A. Dass, J. Phys. Chem. Lett., 2014, 5, 461–466 CrossRef CAS PubMed.
  550. N. Xia and Z. Wu, J. Mater. Chem. C, 2016, 4, 4125–4128 RSC.
  551. W. Q. Shi, Z. J. Guan, J. J. Li, X. S. Han and Q. M. Wang, Chem. Sci., 2022, 13, 5148–5154 RSC.
  552. S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu and R. Jin, Angew. Chem., Int. Ed., 2014, 53, 2376–2380 CrossRef CAS PubMed.
  553. S. Hossain, S. Miyajima, T. Iwasa, R. Kaneko, T. Sekine, A. Ikeda, T. Kawawaki, T. Taketsugu and Y. Negishi, J. Chem. Phys., 2021, 155, 024302 CrossRef CAS PubMed.
  554. M. S. Bootharaju, S. M. Kozlov, Z. Cao, M. Harb, N. Maity, A. Shkurenko, M. R. Parida, M. N. Hedhili, M. Eddaoudi, O. F. Mohammed, O. M. Bakr, L. Cavallo and J. M. Basset, J. Am. Chem. Soc., 2017, 139, 1053–1056 CrossRef CAS PubMed.
  555. Y. Li, M. Zhou, S. Jin, L. Xiong, Q. Yuan, W. Du, Y. Pei, S. Wang and M. Zhu, Chem. Commun., 2019, 55, 6457–6460 RSC.
  556. K. Zheng, V. Fung, X. Yuan, D. E. Jiang and J. Xie, J. Am. Chem. Soc., 2019, 141, 18977–18983 CrossRef CAS PubMed.
  557. J. Yan, H. Su, H. Yang, S. Malola, S. Lin, H. Häkkinen and N. Zheng, J. Am. Chem. Soc., 2015, 137, 11880–11883 CrossRef CAS PubMed.
  558. S. Ito, K. Hirano, K. Koyasu, X. K. Wan, Q. M. Wang and T. Tsukuda, J. Phys. Chem. Lett., 2024, 15, 11060–11066 Search PubMed.
  559. C. A. Fields-Zinna, M. C. Crowe, A. Dass, J. E. F. Weaver and R. W. Murray, Langmuir, 2009, 25, 7704–7710 CrossRef CAS PubMed.
  560. M. Sera, S. Hossain, S. Yoshikawa, K. Takemae, A. Ikeda, T. Tanaka, T. Kosaka, Y. Niihori, T. Kawawaki and Y. Negishi, J. Am. Chem. Soc., 2024, 146, 29684–29693 CrossRef CAS PubMed.
  561. S. Tian, L. Liao, J. Yuan, C. Yao, J. Chen, J. Yang and Z. Wu, Chem. Commun., 2016, 52, 9873–9876 RSC.
  562. S. Ito, K. Koyasu, S. Takano and T. Tsukuda, J. Phys. Chem. C, 2020, 124, 19119–19125 CrossRef CAS.
  563. S. Yang, S. Wang, S. Jin, S. Chen, H. Sheng and M. Zhu, Nanoscale, 2015, 7, 10005–10007 Search PubMed.
  564. S. Sharma, S. Yamazoe, T. Ono, W. Kurashige, Y. Niihori, K. Nobusada, T. Tsukuda and Y. Negishi, Dalton Trans., 2016, 45, 18064–18068 RSC.
  565. Y. Negishi, K. Munakata, W. Ohgake and K. Nobusada, J. Phys. Chem. Lett., 2012, 3, 2209–2214 CrossRef CAS PubMed.
  566. X. Sun, X. Tang, Y. L. Gao, Y. Zhao, Q. Wu, D. Cao and H. Shen, Nanoscale, 2022, 15, 2316–2322 RSC.
  567. J. Zhou, T. Li, Q. Li, P. Zheng, S. Yang, J. Chai and M. Zhu, Inorg. Chem., 2022, 61, 6493–6499 Search PubMed.
  568. Y. Li, M. Chen, S. Wang and M. Zhu, Nanomaterials, 2018, 8, 1070 CrossRef PubMed.
  569. Z. Lin, T. Zhang, C. Fang, S. Jin, C. Xu, D. Hu and M. Zhu, Dalton Trans., 2022, 52, 971–976 Search PubMed.
  570. Y. Du, Z. J. Guan, Z. R. Wen, Y. M. Lin and Q. M. Wang, Chem. – Eur. J., 2018, 24, 16029–16035 CrossRef CAS PubMed.
  571. Z. Qin, S. Sharma, C. qing Wan, S. Malola, W. wu Xu, H. Häkkinen and G. Li, Angew. Chem., Int. Ed., 2021, 60, 970–975 Search PubMed.
  572. E. Khatun, P. Chakraborty, B. R. Jacob, G. Paramasivam, M. Bodiuzzaman, W. A. Dar and T. Pradeep, Chem. Mater., 2020, 32, 611–619 Search PubMed.
  573. X. Kang, H. Abroshan, S. Wang and M. Zhu, Inorg. Chem., 2019, 58, 11000–11009 CrossRef CAS PubMed.
  574. S. F. Yuan, Z. J. Guan and Q. M. Wang, J. Am. Chem. Soc., 2022, 144, 11405–11412 CrossRef CAS PubMed.
  575. K. Mikami, S. Hui, K. Kubo, S. Kume and T. Mizuta, Dalton Trans., 2021, 50, 5659–5665 RSC.
  576. P. Chakraborty, S. Malola, P. Weis, M. Neumaier, E. K. Schneider, H. Häkkinen and M. M. Kappes, J. Phys. Chem. Lett., 2023, 14, 11659–11664 CrossRef CAS PubMed.
  577. S. Hossain, Y. Imai, Y. Motohashi, Z. Chen, D. Suzuki, T. Suzuki, Y. Kataoka, M. Hirata, T. Ono, W. Kurashige, T. Kawawaki, T. Yamamoto and Y. Negishi, Mater. Horiz., 2020, 7, 796–803 RSC.
  578. J. Chai, S. Yang, Y. Lv, H. Chong, H. Yu and M. Zhu, Angew. Chem., 2019, 131, 15818–15821 CrossRef.
  579. A. Nag, A. M. Butt, M. Y. Yang, P. B. Managutti, B. M. Pirzada, M. I. H. Mohideen, A. L. Abdelhady, M. Abu Haija, S. Mohamed, B. V. Merinov, W. A. GoddardIII and A. Qurashi, Mater. Horiz., 2025, 12, 5252–5258 RSC.
  580. X. Zou, S. Jin, S. Wang, M. Zhu and R. Jin, Nano Futures, 2018, 2, 045004 CrossRef CAS.
  581. Y. Yao, W. Hao, J. Tang, K. Kirschbaum, C. G. Gianopoulos, A. Ren, L. Ma, L. Zheng, H. Li and Q. Li, Angew. Chem., Int. Ed., 2024, 63, e202407214 CrossRef CAS PubMed.
  582. F. Xuemei, X. Zuoyi, Y. Qianyu, L. Zhonghai, L. Yixuan, Z. Qiang and L. Songgang, Russ. J. Inorg. Chem., 2024, 69, 207–214 Search PubMed.
  583. F. Hu, Z.-J. Guan, S.-F. Yuan and Q.-M. Wang, Chem. – Asian J., 2023, 18, e202300605 CrossRef CAS PubMed.
  584. S. Hasegawa, S. Takano, S. Yamazoe and T. Tsukuda, Chem. Commun., 2018, 54, 5915–5918 RSC.
  585. S. Theivendran, L. Chang, A. Mukherjee, L. Sementa, M. Stener, A. Fortunelli and A. Dass, J. Phys. Chem. C, 2018, 122, 4524–4531 CrossRef CAS.
  586. C. Kumara, K. J. Gagnon and A. Dass, J. Phys. Chem. Lett., 2015, 6, 1223–1228 Search PubMed.
  587. J. Yan, H. Su, H. Yang, C. Hu, S. Malola, S. Lin, B. K. Teo, H. Häkkinen and N. Zheng, J. Am. Chem. Soc., 2016, 138, 12751–12754 CrossRef CAS PubMed.
  588. K. R. Krishnadas, A. Baksi, A. Ghosh, G. Natarajan and T. Pradeep, ACS Nano, 2017, 11, 6015–6023 Search PubMed.
  589. M. S. Bootharaju, H. Chang, G. Deng, S. Malola, W. Baek, H. Häkkinen, N. Zheng and T. Hyeon, J. Am. Chem. Soc., 2019, 141, 8422–8425 Search PubMed.
  590. J. Chai, S. Yang, T. Chen, Q. Li, S. Wang and M. Zhu, Inorg. Chem., 2021, 60, 9050–9056 Search PubMed.
  591. H. Ansari, N. Bharadwaj, G. Pramanik, I. Chakraborty, B. Pathak and A. Baksi, Small, 2025, 21, e2502758 CrossRef PubMed.
  592. J. Han, H. Li, H. Shen, Y. Xu, X. Zou, X. Kang and M. Zhu, Precis. Chem., 2023, 1, 139–145 CrossRef CAS PubMed.
  593. H. F. Su, H. Deng, L. S. Zheng and B. K. Teo, Inorg. Chem., 2025, 64, 10478–10487 CrossRef CAS PubMed.
  594. Z. Liu, X. Meng, W. Gu, J. Zha, N. Yan, Q. You, N. Xia, H. Wang and Z. Wu, Acta Phys.-Chim. Sin., 2023, 39, 2212064 Search PubMed.
  595. X. K. Wan, X. L. Cheng, Q. Tang, Y. Z. Han, G. Hu, D. E. Jiang and Q. M. Wang, J. Am. Chem. Soc., 2017, 139, 9451–9454 CrossRef CAS PubMed.
  596. X. H. Ma, J. T. Jia, P. Luo, Z. Y. Wang, S. Q. Zang and T. C. W. Mak, Nano Res., 2022, 15, 5569–5574 Search PubMed.
  597. L. Tang, B. Wang, R. Wang and S. Wang, Nanoscale, 2023, 15, 1602–1608 RSC.
  598. S. Gratious, B. Li, D. Mondal, A. Kumar, D. A. Varghese, J. Thomas, D. E. Jiang, V. Kamble and S. Mandal, Chem. Sci., 2025, 16, 11849–11857 RSC.
  599. X. Wei, X. Kang, T. Duan, H. Li, S. Wang, Y. Pei and M. Zhu, Inorg. Chem., 2021, 60, 11640–11647 CrossRef CAS PubMed.
  600. Y. Wang, X. K. Wan, L. Ren, H. Su, G. Li, S. Malola, S. Lin, Z. Tang, H. Häkkinen, B. K. Teo, Q. M. Wang and N. Zheng, J. Am. Chem. Soc., 2016, 138, 3278–3281 CrossRef CAS PubMed.
  601. J. Xu, L. Xiong, X. Cai, S. Tang, A. Tang, X. Liu, Y. Pei and Y. Zhu, Chem. Sci., 2022, 13, 2778–2782 RSC.
  602. Z. Guan, J. Zeng, S. Yuan, F. Hu, Y. Lin and Q. Wang, Angew. Chem., 2018, 130, 5805–5809 CrossRef.
  603. J. L. Zeng, Z. J. Guan, Y. Du, Z. A. Nan, Y. M. Lin and Q. M. Wang, J. Am. Chem. Soc., 2016, 138, 7848–7851 CrossRef CAS PubMed.
  604. X. Li, P. Fang, X. Li, S. Ajmal, X. Zhou, Z. Sun, Y. Song, M. Zhu and P. Li, Eur. J. Inorg. Chem., 2024, 27, e202300657 Search PubMed.
  605. T. Higaki, C. Liu, D. J. Morris, G. He, T. Y. Luo, M. Y. Sfeir, P. Zhang, N. L. Rosi and R. Jin, Angew. Chem., Int. Ed., 2019, 58, 18798–18802 CrossRef CAS.
  606. X. Yuan, S. Malola, G. Deng, F. Chen, H. Häkkinen, B. K. Teo, L. Zheng and N. Zheng, Inorg. Chem., 2021, 60, 3529–3533 CrossRef CAS PubMed.
  607. C. Kumara and A. Dass, Nanoscale, 2011, 3, 3064–3067 RSC.
  608. X. Du, H. Ma, X. Zhang, M. Zhou, Z. Liu, H. Wang, G. Wang and R. Jin, Nano Res., 2022, 15, 8573–8578 CrossRef CAS.
  609. A. C. Dharmaratne and A. Dass, Chem. Commun., 2014, 50, 1722–1724 RSC.
  610. N. Kothalawala, C. Kumara, R. Ferrando and A. Dass, Chem. Commun., 2013, 49, 10850–10852 RSC.
  611. C. Kumara, X. Zuo, D. A. Cullen and A. Dass, J. Phys. Chem. Lett., 2015, 6, 3320–3326 CrossRef CAS.

This journal is © The Royal Society of Chemistry 2026
Click here to see how this site uses Cookies. View our privacy policy here.