Engineering two-dimensional nanobranch architecture in PdAuAg for enhanced ethanol electrooxidation

Abstract

We report a facile synthetic strategy for crafting unique trimetallic PdAuAg nanoplates with an abundant in-plane branching structure, termed “2D nanobranches”. This distinctive architecture combines the benefits of a two-dimensional morphology with a highly dendritic, high-surface-area framework. Physicochemical characterization confirms the successful formation of the ternary alloy and the intricate branched structure. When assessed for the ethanol oxidation reaction (EOR) in an alkaline medium, the PdAuAg 2D nanobranches demonstrate enhanced specific activity, reaction kinetics, and cycling retention compared to a commercial Pd/C benchmark. In situ surface-enhanced Raman spectroscopy (SERS) reveals that the catalyst selectively promotes the C2 pathway for ethanol oxidation to acetic acid, with no detectable C–C bond cleavage, thereby elucidating the origin of its high operational efficiency. Furthermore, density functional theory (DFT) simulations suggest that a higher surface coverage of hydroxyl radicals (OH) in the alkaline environment makes a key reaction step in this pathway more energetically favorable. The enhanced performance is attributed to the synergistic interplay of the ternary composition, which modulates the electronic structure, and the unique 2D branched morphology, which provides a high density of active sites and facilitates mass transport. This work highlights the profound impact of morphological control in conjunction with multimetallic engineering for advancing electrocatalyst design.

Graphical abstract: Engineering two-dimensional nanobranch architecture in PdAuAg for enhanced ethanol electrooxidation

Supplementary files

Article information

Article type
Paper
Submitted
04 Dec 2025
Accepted
02 Jan 2026
First published
14 Jan 2026

Dalton Trans., 2026, Advance Article

Engineering two-dimensional nanobranch architecture in PdAuAg for enhanced ethanol electrooxidation

G. Wang, Y. Min, R. Shen, X. Jin, Y. Wang, Y. Ma and Y. Zheng, Dalton Trans., 2026, Advance Article , DOI: 10.1039/D5DT02910D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements