Issue 15, 2025

Defect formation in CsSnI3 from density functional theory and machine learning

Abstract

Sn-based perovskites as low-toxicity materials are actively studied for optoelectronic applications. However, their performance is limited by p-type self-doping, which can be suppressed by substitutional doping on the cation sites. In this study, we combine density functional theory (DFT) calculations with machine learning (ML) to develop a predictive model and identify the key descriptors affecting formation energy and charge transition levels of the substitutional dopants in CsSnI3. Our DFT calculations create a dataset of formation energies and charge transition levels and show that Y, Sc, Al, Zr, Nb, Ba, and Sr are effective dopants that pin the Fermi level higher in the band gap, suppressing the p-type self-doping. We explore ML algorithms and propose training a random forest regression model to predict the defect formation properties. This work shows the predictive capability of combining DFT with machine learning and provides insights into the important features that determine the defect formation energetics.

Graphical abstract: Defect formation in CsSnI3 from density functional theory and machine learning

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
10 Dec 2024
Accepted
02 Mar 2025
First published
03 Mar 2025

J. Mater. Chem. C, 2025,13, 7550-7557

Defect formation in CsSnI3 from density functional theory and machine learning

C. Khamdang and M. Wang, J. Mater. Chem. C, 2025, 13, 7550 DOI: 10.1039/D4TC05215C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements