Revolutionizing biosensing with wearable microneedle patches: innovations and applications
Abstract
Wearable microneedle (MN) patches have emerged as a transformative platform for biosensing, offering a minimally invasive and user-friendly approach to real-time health monitoring and disease diagnosis. Primarily designed to access interstitial fluid (ISF) through shallow skin penetration, MNs enable precise and continuous sampling of biomarkers such as glucose, lactate, and electrolytes. Additionally, recent innovations have integrated MN arrays with microfluidic and porous structures to support sweat-based analysis, where MNs act as structural or functional components in hybrid wearable systems. This review explores the design, fabrication, and functional integration of MNs into wearable devices, highlighting advances in multi-analyte detection, wireless data transmission, and self-powered sensing. Challenges related to material biocompatibility, sensor stability, scalability, and user variability are addressed, alongside emerging opportunities in microfluidics, artificial intelligence, and soft materials. Overall, MN-based biosensing platforms are poised to redefine personalized healthcare by enabling dynamic, decentralized, and accessible health monitoring.
- This article is part of the themed collection: Journal of Materials Chemistry B Recent Review Articles