Jacqueline Hidalgo-Jiménezab,
Taner Akbayc,
Xavier Sauvaged,
Lambert van Eijcke,
Motonori Watanabeaf,
Jacques Huotg,
Tatsumi Ishiharaaf and
Kaveh Edalati*af
aInternational Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan. E-mail: kaveh.edalati@kyudai.jp; Fax: +81 92 802 6744; Tel: +81 92 802 6744
bDepartment of Automotive Science, Kyushu University, Fukuoka, Japan
cMaterials Science and Nanotechnology Engineering, Yeditepe University, Istanbul, Turkey
dUniv Rouen Normandie, INSA Rouen Normandie, CNRS, Groupe de Physique des Matériaux, UMR6634, 76000 Rouen, France
eDepartment of Radiation Science and Technology, Delft University of Technology, Delft, Netherlands
fMitsui Chemicals, Inc. – Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka, Japan
gHydrogen Research Institute, Université du Québec à Trois-Rivières, Trois-Rivières, Canada
First published on 6th August 2025
Correction for ‘Hybrid d0 and d10 electronic configurations promote photocatalytic activity of high-entropy oxides for CO2 conversion and water splitting’ by Jacqueline Hidalgo-Jiménez et al., J. Mater. Chem. A, 2024, 12, 31589–31602, https://doi.org/10.1039/D4TA04689G.
![]() | ||
Fig. 4 Homogeneous distribution of elements at the micrometer and nanometer scales in high-entropy oxide TiZrNbTaZnO10. (a) SEM-EDS and (b) STEM-EDS mappings. |
Photocatalyst | Mass (mg) | Surface area (m2 g−1) | Light source | CO2 conversion (μmol hg−1) | CO2 conversion (μmol hm−2) | Water splitting (mmol hg−1) | Water splitting (mmol hm−2) | Ref. | ||
---|---|---|---|---|---|---|---|---|---|---|
CO | CH4 | CO | CH4 | H2 | H2 | |||||
TiO2 anatase | 50 | 13.5 | 300 W Xe | 0.3189 | 0.47 | 39 | ||||
TiO2 (HPT, ∼70% columbite) | 50 | 0.1 | 300 W Xe | 0.005 | 1.08 | 39 | ||||
TiO2 (HPT and anneal) | 100 mg | 6.8 | 300 W Hg | 1.39 | 0.15 | 49 | ||||
ZnO (HPT) | 50 | 0.585 | 0.45 | 48 | ||||||
CeO2−x | 50 | 20.5 | 300 W Xe | 1.68 | 0.081 | 50 | ||||
Nb2O5/TiO2 | 100 | 57.3 | 200 W Xe | 0.18 | 10.31 | 46 | ||||
S dopped Ta2O5-CdS | 5 | 0.017 | 300 W Xe | 0.2725 | 16.03 | 51 | ||||
MnCo/CN | 300 W Xe | 47 | 52 | |||||||
Cd1−xZnxS | 45 | 119 | 100 W LED | 2.9 | 0.22 | 0.096 | 0.01 | 57 | ||
TiZrHfNbTaO11 | 100/50 | 0.089 | 400 W Hg/300 W Xe | 4.6 | — | 5.16 | — | 0.0361 | 0.2 | 4 and 10 |
TiZrHfNbTaO11 (mechano-thermal synthesis) | 50 | 3 | 300 W Xe | 0.027 | 134.76 | 54 | ||||
TiZrHfNbTaO11 (laser crushing) | 100 | 2.69 | 400 W Hg | 50 | 200 | 1.66 | 6.66 | 24 | ||
TiZrHfNbTaO6N3 | 100/50 | 2.3 | 400 W Hg, 300 W Xe | 11.6 | — | 0.5 | — | 0.0319 | 0.006 | 11 and 17 |
Ce0.2Zr0.2La0.2Pr0.2Y0.2O2 | 2 | 61.4 | 11 W UV | 9.2 | 0.0002 | 12 | ||||
ZrYCeCrO2-based + 38 at% Ca | — | 150 W Xe | 0.415 | 13 | ||||||
Li(NbVTaCrMoWCo)O3 | 50 | 11.19 | 300 W Xe, 420 nm cutoff filter | 6.61 | 0.29 | 15 | ||||
(Co, Mn, Ni, Zn)O-metal organic framework | 10 | 300 W Xe | 13.24 | 16 | ||||||
Ce0.2Zr0.2La0.2Pr0.2Y0.2O2 | 2 | 61.4 | 11 W UV | 9.2 | 0.0002 | 12 | ||||
(Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 | 20 | 16.71 | 300 W Xe | 23.01 | 2.89 | 0.03 | 0.65 | 8 | ||
Cu-(Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 | 20 | 42.08 | 300 W Xe | 5.66 | 33.84 | 0.002 | 0.02 | 19 | ||
(NiCuMnCoZnFe)3O4 | 30 | 66.48 | — | 15.89 | 8.03 | 0.007 | 0 | 20 | ||
TiZrNbTaZnO10 | 100/50 | 0.03 | 400 W Hg/300 W Xe | 25.2 | 9.9 | 761.3 | 301 | 0.2 | 6.6 | This study |
The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.
This journal is © The Royal Society of Chemistry 2025 |