Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Correction: Hybrid d0 and d10 electronic configurations promote photocatalytic activity of high-entropy oxides for CO2 conversion and water splitting

Jacqueline Hidalgo-Jiménezab, Taner Akbayc, Xavier Sauvaged, Lambert van Eijcke, Motonori Watanabeaf, Jacques Huotg, Tatsumi Ishiharaaf and Kaveh Edalati*af
aInternational Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, Fukuoka, Japan. E-mail: kaveh.edalati@kyudai.jp; Fax: +81 92 802 6744; Tel: +81 92 802 6744
bDepartment of Automotive Science, Kyushu University, Fukuoka, Japan
cMaterials Science and Nanotechnology Engineering, Yeditepe University, Istanbul, Turkey
dUniv Rouen Normandie, INSA Rouen Normandie, CNRS, Groupe de Physique des Matériaux, UMR6634, 76000 Rouen, France
eDepartment of Radiation Science and Technology, Delft University of Technology, Delft, Netherlands
fMitsui Chemicals, Inc. – Carbon Neutral Research Center (MCI-CNRC), Kyushu University, Fukuoka, Japan
gHydrogen Research Institute, Université du Québec à Trois-Rivières, Trois-Rivières, Canada

Received 18th July 2025 , Accepted 18th July 2025

First published on 6th August 2025


Abstract

Correction for ‘Hybrid d0 and d10 electronic configurations promote photocatalytic activity of high-entropy oxides for CO2 conversion and water splitting’ by Jacqueline Hidalgo-Jiménez et al., J. Mater. Chem. A, 2024, 12, 31589–31602, https://doi.org/10.1039/D4TA04689G.


The authors regret that in the original article, the scale bars in Fig. 4b and 5a were incorrect. The authors also regret errors in the orientation of the atomic planes in Fig. 6e. Additionally, the range of the X-axis in Fig. 9a was twice as large as the correct value, and two numbers in Table 3 were incorrectly shown as 12 and 2.95 instead of the correct values, 0.2 and 6.6. These unintentional errors do not affect any other data or the conclusions of the manuscript. The correct Fig. 4–6, 9 and Table 3 are as shown here.
image file: d5ta90172c-f4.tif
Fig. 4 Homogeneous distribution of elements at the micrometer and nanometer scales in high-entropy oxide TiZrNbTaZnO10. (a) SEM-EDS and (b) STEM-EDS mappings.

image file: d5ta90172c-f5.tif
Fig. 5 Homogeneous distribution of elements at the atomic scale in high-entropy oxide TiZrNbTaZnO10. (a) Three-dimensional chemical composition distribution and (b) percentage of elements along the sample tip.

image file: d5ta90172c-f6.tif
Fig. 6 Formation of micro-sized particles with a monoclinic structure in high-entropy oxide TiZrNbTaZnO10. (a and b) SEM micrographs at different magnifications, (c) TEM bright-field micrograph, (d) SAED pattern, and (e) high-resolution image and corresponding fast Fourier transform.

image file: d5ta90172c-f9.tif
Fig. 9 Enhancement of the photocatalytic activity of high-entropy oxide TiZrNbTaZnO10 compared to TiZrHfNbTaO11 due to the mixed d0 and d10 electronic configuration. CO2 to CO conversion rate per (a) unit mass and (b) surface area of the two catalysts. H2 production from water splitting per (c) unit mass and (d) surface area of the two catalysts.
Table 3 Catalyst mass, catalyst surface area, light source, rate of CO2 conversion and amount of hydrogen production for several binary oxides, composites and high-entropy photocatalysts compared with TiZrNbTaZnO10
Photocatalyst Mass (mg) Surface area (m2 g−1) Light source CO2 conversion (μmol hg−1) CO2 conversion (μmol hm−2) Water splitting (mmol hg−1) Water splitting (mmol hm−2) Ref.
CO CH4 CO CH4 H2 H2
TiO2 anatase 50 13.5 300 W Xe         0.3189 0.47 39
TiO2 (HPT, ∼70% columbite) 50 0.1 300 W Xe         0.005 1.08 39
TiO2 (HPT and anneal) 100 mg 6.8 300 W Hg 1.39   0.15       49
ZnO (HPT) 50             0.585 0.45 48
CeO2−x 50 20.5 300 W Xe 1.68   0.081       50
Nb2O5/TiO2 100 57.3 200 W Xe         0.18 10.31 46
S dopped Ta2O5-CdS 5 0.017 300 W Xe         0.2725 16.03 51
MnCo/CN     300 W Xe 47           52
Cd1−xZnxS 45 119 100 W LED 2.9 0.22 0.096 0.01     57
TiZrHfNbTaO11 100/50 0.089 400 W Hg/300 W Xe 4.6 5.16 0.0361 0.2 4 and 10
TiZrHfNbTaO11 (mechano-thermal synthesis) 50 3 300 W Xe         0.027 134.76 54
TiZrHfNbTaO11 (laser crushing) 100 2.69 400 W Hg 50 200 1.66 6.66     24
TiZrHfNbTaO6N3 100/50 2.3 400 W Hg, 300 W Xe 11.6 0.5 0.0319 0.006 11 and 17
Ce0.2Zr0.2La0.2Pr0.2Y0.2O2 2 61.4 11 W UV         9.2 0.0002 12
ZrYCeCrO2-based + 38 at% Ca   150 W Xe         0.415   13
Li(NbVTaCrMoWCo)O3 50 11.19 300 W Xe, 420 nm cutoff filter         6.61 0.29 15
(Co, Mn, Ni, Zn)O-metal organic framework 10   300 W Xe         13.24   16
Ce0.2Zr0.2La0.2Pr0.2Y0.2O2 2 61.4 11 W UV         9.2 0.0002 12
(Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 20 16.71 300 W Xe 23.01 2.89 0.03 0.65     8
Cu-(Ga0.2Cr0.2Mn0.2Ni0.2Zn0.2)3O4 20 42.08 300 W Xe 5.66 33.84 0.002 0.02     19
(NiCuMnCoZnFe)3O4 30 66.48 15.89 8.03 0.007 0     20
TiZrNbTaZnO10 100/50 0.03 400 W Hg/300 W Xe 25.2 9.9 761.3 301 0.2 6.6 This study


The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.


This journal is © The Royal Society of Chemistry 2025
Click here to see how this site uses Cookies. View our privacy policy here.