Controllable dispersion of nickel phthalocyanine molecules on graphene oxide for efficient electrocatalytic CO2 reduction

Abstract

Single-atom electrocatalysts with Ni–Nx–C sites usually possess excellent activity for the CO2 reduction reaction (CO2RR). However, it still remains a challenge to synthesize them using unmodified nickel phthalocyanine (NiPc) with an intrinsic Ni–N4–C moiety at room temperature. Here, NiPc molecules are controllably dispersed on graphene oxide (GO) in the form of single molecules, dimers, or aggregates through a simple hydrolysis of protonated NiPc in a GO-containing aqueous phase. Systematic characterization shows the existence of π–π interaction, hydrogen bond and axial coordination between NiPc and GO in NiPc–GO composites. Electrochemical tests demonstrate that these NiPc–GO composites have high activity for electrocatalytic CO2RR to CO. After optimizing the GO content in NiPc–GO, a CO Faraday efficiency of >90% is achieved over a work potential range of −0.8 to −1.1 VRHE, reaching up to 98.6% at −0.9 VRHE. Further experiments confirm that GO in NiPc–GO benefits CO2 adsorption and formation of the *COOH intermediate. The change in the Ni2+/Ni3+ ratio with the GO amount in NiPc–GO composites reveals that the Ni(II)/Ni(III)/GO heterojunction structure is the most conductive to the CO2RR process. This work provides an insight into the design and synthesis of single-atom Ni–N4–C electrocatalysts for the CO2RR.

Graphical abstract: Controllable dispersion of nickel phthalocyanine molecules on graphene oxide for efficient electrocatalytic CO2 reduction

Supplementary files

Article information

Article type
Paper
Submitted
27 Feb 2025
Accepted
02 Apr 2025
First published
02 Apr 2025

J. Mater. Chem. A, 2025, Advance Article

Controllable dispersion of nickel phthalocyanine molecules on graphene oxide for efficient electrocatalytic CO2 reduction

J. He, Y. Han, X. Xu, M. Sun, L. Kang, W. Lin and J. Liu, J. Mater. Chem. A, 2025, Advance Article , DOI: 10.1039/D5TA01623A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements