Issue 28, 2025

Progressive colloidal clogging mechanism by dendritic build-up in porous media

Abstract

Colloidal transport in porous media governs deposition and clogging mechanisms that critically influence flow behavior and impact the efficiency of both natural and industrial systems. However, the role of dendritic structures, a distinct deposition morphology, in this process remains unclear. Understanding the formation and growth of dendrites is essential for advancing clogging dynamics and assessing their impact on permeability. To address this, we perform microfluidic flow experiments and computational fluid analysis to observe and characterize dendrite formation in a heterogeneous tortuous porous domain. Our results reveal a novel clogging mechanism – dendrite clogging – where a single deposition site initiates a structure that extends across the pore space, bridging grains and causing complete clogging. Unlike previously described aggregation-based clogging, which involves multiple deposition sites, dendrite clogging evolves from a single-site deposition. We establish a flow-dependent criterion for dendrite formation by combining hydrodynamic-adhesive torque balance analysis with experimental deposition patterns. Our findings show that dendrites form when front cone stagnation regions are large enough to accommodate multilayer deposition. Moderate flow rates promote dendrite growth, leading to abrupt permeability loss. In contrast, higher flow rates suppress dendrite formation, resulting in a more gradual decline, as captured by the Verma–Pruess permeability–porosity model. Our results provide a predictive model for flow-induced colloidal deposition, with implications for improving filtration systems, groundwater flow, and biomedical microfluidics. Insights into dendrite-driven clogging could lead to methods for reducing clogging in porous systems and optimizing flow performance in diverse applications.

Graphical abstract: Progressive colloidal clogging mechanism by dendritic build-up in porous media

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
18 Mar 2025
Accepted
14 Jun 2025
First published
23 Jun 2025

Soft Matter, 2025,21, 5687-5698

Progressive colloidal clogging mechanism by dendritic build-up in porous media

W. Okaybi, S. Roman and C. Soulaine, Soft Matter, 2025, 21, 5687 DOI: 10.1039/D5SM00285K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements