Quantifying and understanding the tilt of a Pt Janus active colloid near solid walls

Abstract

Active colloids powered by self-generated gradients are influenced by nearby solid boundaries, leading to their reorientation. In this study, the tilt angles (the angle between where an active colloid moves and where it faces) were measured to be 13.3° and −33.9° for 5 μm polystyrene microspheres half coated with 10 nm Pt caps moving in 5% H2O2 along the bottom and top glass wall, respectively, indicating that the colloids moved with their PS (forward) caps tilted slightly toward the wall. The speeds and tilt angles of Pt Janus colloids increased consistently with increasing H2O2 concentration (0.5 to 10 v/v%) and Pt cap thickness (5 to 50 nm). We propose that the tilt results from a balance between gravitational torque (caused by the Pt cap's weight) and chemical activity-induced torque (from self-generated chemical gradients), qualitatively supported by finite element simulations based on self-electrophoresis. Our findings are useful for understanding how chemically active colloids move in, and interact with, their environment.

Graphical abstract: Quantifying and understanding the tilt of a Pt Janus active colloid near solid walls

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
21 Jan 2025
Accepted
27 Mar 2025
First published
28 Mar 2025

Soft Matter, 2025, Advance Article

Quantifying and understanding the tilt of a Pt Janus active colloid near solid walls

J. Liu, Y. Xu, Z. Qiao, S. Li, X. Ma, T. Kuang, H. P. Zhang and W. Wang, Soft Matter, 2025, Advance Article , DOI: 10.1039/D5SM00073D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements