Issue 14, 2025

Investigation on the fast phase transition mechanism of flow-induced oriented iPB-1

Abstract

The phase transition mechanism of isotactic polybutene-1 (iPB-1) has always been a central research topic in the fields of polymer physics and industrial application. Phase transition kinetics of the flow-induced oriented form II is significantly faster than the isotropic form II that crystallizes under quiescent condition. In this study, combining the in situ X ray diffraction technique and a homemade extensional rheometer, the influence of amorphous region on the transformation kinetics was been investigated. Results indicated that annealing above the melting temperature (Tm) decreased the phase transition rate, while annealing below the Tm exhibited no obvious impact on the phase transition rate when the annealing time was only 5 min. However, prolonging the annealing time significantly reduced the phase transition kinetics. Remarkably, the crystallinity remained constant during the annealing process, while it exhibited an increase during the subsequent cooling process. The SAXS measurements showed that long spacing decreased after annealing. It is speculated that extended chains in the amorphous region are relaxed and shortened during the annealing process. This work recommends the rapid cooling of iPB-1 products in industrial manufacturing to prevent the relaxation of amorphous chains and promote the phase transition process.

Graphical abstract: Investigation on the fast phase transition mechanism of flow-induced oriented iPB-1

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
08 Jan 2025
Accepted
05 Mar 2025
First published
06 Mar 2025

Soft Matter, 2025,21, 2686-2693

Investigation on the fast phase transition mechanism of flow-induced oriented iPB-1

L. Ji, H. Zhang, Y. Ji, F. Su and C. Liu, Soft Matter, 2025, 21, 2686 DOI: 10.1039/D5SM00019J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements