DOI:
10.1039/D5SC06158J
(Edge Article)
Chem. Sci., 2025, Advance Article
Büchner-type ring expansion of aromatic main-group biradicaloids toward phosphorus radical-derived NIR-II photothermal materials
Received
13th August 2025
, Accepted 9th September 2025
First published on 9th September 2025
Abstract
The Büchner reaction enables the construction of functionalized cycloheptatrienes and aromatic tropylium cations, and has recently been extended to the ring expansion of arenes with low-valent main-group systems. Although stable 6π-aromatic biradicaloids typically exhibit characteristic biradical reactivity, we leverage the aromaticity of dicarbondiphosphides (1) to achieve an unprecedented Büchner-type ring expansion, yielding air-stable aromatic 1,3-diphospholium cations (3). Multimodal characterization (NMR, UV-vis, SC-XRD, computational studies) confirms the 6π-aromaticity of 3. Reduction of 3 yields stable 7π-electron neutral radicals (4), which contrast with conventional five-membered neutral radicals possessing 5π-electron systems. These radicals (4a: λmax = 1113.2 nm; 4b: λmax = 1330.7 nm) exhibit strong second near-infrared biowindow (NIR-II, 1000–1350 nm) absorptions, and shown promising application potential as the first phosphorus radical-derived organic NIR-II photothermal materials.
Introduction
The Büchner reaction1 has evolved into a versatile synthetic strategy for the direct construction of functionalized cycloheptatrienes2 and aromatic tropylium cations from arenes.3 Extensive mechanistic studies have established that this transformation proceeds through key norcaradiene intermediates (A, Fig. 1A) via a [2 + 1] cycloaddition between arenes and carbenes.4 This mechanistic framework has been substantiated by the successful isolation of various norcaradiene derivatives (A_I, Fig. 1B).5 Recent advances have demonstrated the adaptation of this ring-expansion reaction to main group element analogues of carbenes, including silylenes,6 phosphinidenes,7 and alumylenes.8 The structural characterization of silicon- and phosphorus-containing norcaradiene analogues, specifically silanorcaradiene (A_II)6a,9 and phosphanorcaradiene (A_III, Fig. 1B),10 provides strong experimental validation of this mechanistic pathway.
 |
| Fig. 1 (A) Büchner ring expansion of arenes; (B) selected isolable examples of A; (C) Selected examples of biradicaloids with considerable aromaticity; (D) the highlights of this work. | |
Biradicaloids, defined as species comprising two covalently linked groups each carrying an unpaired electron that may combine to give a singlet ground state, have garnered significant interest due to their unique electronic configuration, unconventional reactivity profiles, and promising applications in materials science.11 Despite their prevalence as transient intermediates in chemical processes,12 molecular design principles such as steric protection and spin delocalization have enabled the isolation of stable singlet biradicaloids – especially those exhibiting pronounced 6π-aromatic character.13 Representative examples span diverse ring systems, including four-membered (B, and C),14 five-membered (D),15 and six-membered heterocycles (E, Fig. 1C).16 Systematic investigations revealed that their chemical behaviour is governed by the inherent biradical character of their transannular radical centers, manifested in distinctive activation modes toward dihydrogen (H2), disulphide, and unsaturated small molecules.13d,17
Motivated by the aromatic nature of these biradicaloids, we hypothesized that dicarbondiphosphides 1 (ref. 18) might exhibit reactivity patterns reminiscent of conventional aromatic compounds. Consistent with this premise, we previously demonstrated their utility as 6π-electron ligands in half-sandwich complexes formation.19 Building on this foundation, Coburger and co-workers recently disclosed 6π-complexes of 1 with main-group metal cations20 and a related five-membered diphosphaindeylide-based half-sandwich complex.21 However, investigations into aromaticity-driven transformation in biradicaloids remains limited. In this context, we herein disclose a formal Büchner-type ring expansion of dicarbondiphosphides 1 to air-stable aromatic 1,3-diphospholium cations22 3 featuring two N-heterocyclic carbene (NHC)23 substituents (Fig. 1C). Multimodal characterization, including multinuclear NMR spectroscopy, UV-vis absorption spectroscopy, single-crystal X-ray diffraction (SC-XRD), and computational studies, unequivocally confirm the structural and electronic features of 3. Chemical reduction of 3 yields novel stable 7π-electron neutral radicals 4 (Fig. 2), whereas conventional five-membered cyclic neutral radicals predominantly possess a 5π-electron system.24 These radicals (4a: λmax = 1113.2 nm; 4b: λmax = 1330.7 nm) exhibit strong absorption in the second near-infrared region (NIR-II biowindow, 1000–1350 nm).25 The temperature of 4a and 4b as a powders in NMR tube, increased to 63 °C and 56 °C in 180 s upon the irradiation of NIR-II laser (1064 nm, 0.5 W cm−2), establishing it at the first phosphorus radical-based organic NIR-II photothermal material.26
 |
| Fig. 2 (A) Synthesis of 2a,b–4a,b; (B) Solid-state structure of 2a and 3a (ellipsoids are set to 50% probability; H atoms except H5A, H5B from 2a and H3 from 3a, solvents, and anions are omitted for clarity). Selected distances (Å): 2a: P1–C1 1.816(2), P1–C3 1.809(2), P1–C5 1.836(3), P2–C1 1.755(2), P2–C3 1.735(2), C1–C2 1.407(3), C3–C4 1.407(3), C5–Cl1 1.784(3); 3a: P1–C1 1.7842(19), P1–C3 1.738(5), P2–C1 1.7546(17), C1′-C3 1.391, C1–C2 1.447(2), ′(1 + X, +Y, 1/2 − Z). | |
Results and discussion
Synthesis and characterization of 1,3-diphospholium salts 3a,b
The electronic ground state of NHC substituted dicarbondiphosphides (L2C2P2) can be described by three major resonance forms: aromatic (1_I), biradicalloid (1_II), and zwitterionic (1_III, Fig. 2A), determining their unique reactivity in coordination chemistry and small molecule activation.17e–g,19b,c,27 Treatment of 1a (L = SIPr = 1,3-bis-(2,6-diisopropylphenyl)imidazolidin-2-ylidine) and 1b (L = IPr = 1,3-bis-(2,6-diisopropylphenyl)imidazole-2-ylidine) with excess dichloromethane at room temperature (RT) afforded red powders 2a ([(SIPr)2C2PP(CH2Cl)]Cl) or 2b ([(IPr)2C2PP(CH2Cl)]Cl) in over 75% isolated yield (Fig. 2A). The 31P NMR spectra of 2a or 2b displayed resonances at δ(31P) = 452.9 ppm (d, 2JPP = 65.2 Hz) and 59.7 ppm (dt, 2JPP = 65.2 Hz, 2JPH = 10.9 Hz), or δ(31P) = 396.0 ppm (d, 2JPP = 67.7 Hz) and 58.0 ppm (dt, 2JPP = 67.7 Hz, 2JPH = 11.1 Hz), respectively. The molecular structures of 2a,b are confirmed by SC-XRD analyses (Fig. 2B and S22). In the case of 2a, P1 adopts a trigonal pyramidal geometry (∠CPC = 294.1°) with the formation of a new P1–C5 single bond (1.836(3) Å), while P2 is two-coordinated. The P1–C1 (1.816(2) Å) and P1–C3 (1.809(2) Å) are longer than P2–C1 (1.755(2) Å) and P2–C3 (1.735(2) Å). The NHC–C linkages (avg. 1.407 Å) show significant elongation compared to precursor 1a (avg. 1.388 Å).18a These features correlate with positive charge delocalization across P2 and two NHC substituents.27,28
Deprotonation of 2a,b with excess of triethylamine in acetonitrile at elevated temperature yielded yellow or pink powders 3a ([(SIPr)2C2P2(CH)]Cl) or 3b ([(IPr)2C2P2(CH)]Cl) in over 86% yield (Fig. 2A). Multinuclear NMR spectra and SC-XRD analyses confirmed the molecular structures of 3a,b as cationic five-membered heterocycles with chloride as counterion. The 31P NMR spectra of 3a or 3b exhibited resonances at δ(31P) = 252.3 ppm (d, 2JPP = 15.9 Hz) and 216.9 ppm (dd, 2JPP = 15.9 Hz, 2JPH = 45.3 Hz), or δ(31P) = 229.1 ppm (d, 2JPP = 14.3 Hz) and 207.9 ppm (dd, 2JPP = 14.3 Hz, 2JPH = 45.3 Hz), respectively. Those chemical shifts are comparable to the ones of precursors 1a (δ31P = 227.8 ppm) and 1b (δ31P = 196.3 ppm), which implies the presence of π-electron delocalization over two-coordinated phosphorus centers. An unambiguous assignment of the molecular structure of 3a was obtained based on SC-XRD analyses (Fig. 2B). The central C3P2 ring is planar and the bond distances are in the range for delocalized P
C (1.78–1.74 Å) and C
C bonds (1.39 Å) [Σrcov(P–C) = 1.86 Å, Σrcov(P=C) = 1.69 Å, Σrcov(C–C) = 1.50 Å, Σrcov(C=C) = 1.34 Å].29 The C–C bond lengths between the C3P2 ring and SIPr groups are 1.447(2) Å, much longer than typical C
C double bonds, indicating high electron donation from the SIPr groups to the central C3P2 ring. These structural features of 3 support the presence of an aromatic C3P2 ring (3_II). Indeed, this may be one reason why 3 is air stable. There are few low-valent organophosphorus compounds, which exhibit such high air stability.30
Computational insights into the electronic structure and a possible reaction mechanism
For a better understanding of the electronic structure of 3, density functional theory (DFT) calculations31 at the BP86/Def2SVP level were carried out for the simplified model 3aM,18a where the NHC SIPr were replaced with SIMe (SIMe = 1,3-dimethyl-imidazoline-2-ylidine). Detailed molecular orbital analysis (Fig. 3A) revealed that the highest occupied molecular orbital (HOMO), HOMO − 1, and HOMO − 6 predominantly comprise π-type orbitals of the C3P2 ring, while the lowest unoccupied molecular orbital (LUMO) primarily delocalizes across the phosphorus p-type orbital and the NHC-linked C
C π-type orbitals. Quantitative aromaticity assessment via the calculation of the nuclear independent chemical shift (BP86/Def2TZVP) yielded NICS(1) = −9.0 ppm for 3aM versus NICS(1) = −9.8 ppm for benzene, confirming significant aromatic character. This is in stark contrast to the weakly aromatic precursor 1aM (NICS(1) = −4.1 ppm). Intrinsic bond orbital (IBO)32 analysis at PBE/Def2SVP level of theory further corroborate the electronic delocalization of the p-electron system (Fig. 3B). IBO-1 is mainly the π-type orbital of P
C bond, and IBO-2 or IBO-3 represent two π-type orbitals over the P–C–C or P–C units of the C3P2 ring that are polarized towards the NHC groups. These computational findings conclusively demonstrate a 6π-aromatic C3P2 core with positive charge delocalization over one of the phosphorus atoms and its two adjacent NHC groups in 3.
 |
| Fig. 3 (A) Kohn–Sham MOs (isovalue = 0.05) of simplified model 3aM; (B) Visual representation of selected IBOs. L = SIMe. | |
The mechanism leading to 3a from the postulated intermediate formed by the deprotonation of 2a was probed by DFT calculations at the SMD-BP86/Def2TZVP//BP86/Def2SVP level of theory for the model 3aM.33 The minimum energy reaction pathway (MERP) for a possible rearrangement is shown in Fig. 4. The formation of a norcaradiene-type intermediate IN2 (1.7 kcal mol−1; c.f A In Fig. 1A) via [2 + 1] cycloaddition between one of the P–C bond and transient carbene is nearly thermal neutral and proceeds via the activated complex TS1 (24.3 kcal mol−1). The following P–C cleavage is easily achieved via TS2 (0.2 kcal mol−1) to generate ring-expanded IN3 (−13.5 kcal mol−1) in an exergonic reaction, which precludes any experimental detection of IN2. In the final step, C–Cl cleavage leads to the thermodynamically favored product 3aM (−65.7 kcal mol−1). In addition, Schulz and co-workers have predicted that the ring-expansions of a four-membered diphosphadiazanediyl (C, Fig. 1C) with carbon monoxide (TS > 37 kcal mol−1)15c or isonitriles (TS > 48 kcal mol−1)15a,34 to five-membered biradicaloids via biradical-type ring expansion mechanism are kinetically unfavourable. Thus, the formation of 3 likely proceeds via a Büchner-type mechanism via kinetically accessible transition states (<25 kcal mol−1) with strong overall thermodynamic driving forces (>70 kcal mol−1).
 |
| Fig. 4 MERPs for the formation of 3aM. | |
Synthesis and characterization of neutral 7π-electron radicals 4a,b
The cyclic voltammograms of a dichloromethane solution using 0.1 M [Bu4N][PF6] as the electrolyte show a reversible one-electron redox wave at E1/2 = −1.61 V (3a, Fig. 5A) or −1.57 V (3b, Fig. S23) at a scan rate of 0.1 V s−1 (vs. Fc+/Fc, Fc+ = ferrocenium, Fc = ferrocene), alluding to the generation of long-lived radicals. Chemically, 3a,b can be quantitatively reduced with magnesium powder yielding highly air-sensitive neutral radicals 4a,b as brown powders. The X-band CW-EPR spectra of 4a,b (Fig. 5, and S23) in 2-methyltetrahydrofuran at RT show a doublet due to large isotropic 31P hyperfine coupling constants (HFC) (av. giso = 2.0045, aiso(P2) = 153.4 MHz for 4a, giso = 2.0041, aiso(P2) = 127.2 MHz for 4b). In frozen solution at 100 K, the main features of the spectra of 4a,b correspond to primarily anisotropic 31P hyperfine interactions. The simulation of these spectra yielded the principal g values and HFCs for 4a as g = [2.0027, 2.0090, 2.0020], and A(P2) = [5.1, 5.1, 450.2] MHz; for 4b as g = [2.0031, 2.0072, 2.0020], and A(P2) = [3.2, 3.2, 375.1] MHz, respectively. An analysis of the solution and anisotropic solid-state EPR spectra allow to estimate the total spin density at P2 to be 41.6% for 4a and 33.8% for 4b, respectively. Consistent with these experimental data, DFT calculations at the BP86/Def2SVP level of theory on the optimized structures (see ESI for details) show that the Mulliken spin density (Fig. 5D) is primarily localized on P2 (43.5%), C2 (20.6%), and C4 (18.4%) for 4a, and localized on P2 (38.3%), C2 (12.4%), and C4 (16.2%) for 4b, respectively.
 |
| Fig. 5 (A) Cyclic voltammogram of 3a; CW-EPR spectra at RT (B) and 100 K (C), calculated spin densities (density = 0.004) (D), solid-state structure (Ellipsoids are set to 50% probability; H atoms are omitted for clarity) (E), selected distances (Å): P1–C1 1.787(8), P1–C5 1.719(3), C5–C3 1.444(16), P2–C3 1.790(7), P2–C1 1.793(7), C1–C2 1.396(10), C3–C4 1.394(9), and experimental UV-Vis spectrum shown in black line and calculated Gaussian absorption bands shown in blue bars (F) of 4a. | |
Brown single crystals of 4a were grown from a saturated hexane solution via slow evaporation at RT and studied by SC-XRD analysis (Fig. 5E). Like in the precursor 3a, the central C3P2 ring of 4a is planar indicating significant electron delocalization over the ring skeleton. The P1 = C5 bond [1.719(3) Å vs. 1.738(5) in 3a] is shortened while all other P–C bonds (avg. 1.79 Å) and C–C bonds (1.444(16) Å) are elongated as compared to those in 3a indicating reduced aromaticity, but these bonds distances remain in the range of delocalized bonds.29 The C
C bonds (avg. 1.40 Å) between the C3P2 ring and SIPr groups in 4a are shorter than that in 3a [1.447(2) Å] implying enhanced electron back-donating from the C3P2 ring to SIPr. The ultraviolet-visible (UV-Vis) absorption spectra of solutions of 4a,b in toluene exhibit strong absorptions at λmax = 1113.2 nm (4a) and 1330.7 nm (4b). According to time-dependent density functional theory (TD-DFT) calculations, these absorptions arise mainly from electronic transitions of the highest singly occupied molecular orbital (SOMO) to the singly unoccupied molecular orbital (SUMO) (π–π*), 1076.3 nm (4a, Fig. 5F), 1205.6 nm (4b, Fig. S27).
Photothermal materials operating in NIR-II biowindow (1000–1350 nm)25 have attracted significant interest due to advantages like deep tissue penetration and high maximum permissible exposure.35 Nevertheless, designing organic NIR-II photothermal materials remains challenging.35,36 Organic radicals are promising candidates, as their SOMO–SUMO gaps are inherently narrower than the HOMO–LUMO gap of closed-shell molecules, enabling efficient NIR photothermal conversion.26 Radicals 4a (λmax = 1113.2 nm, 5300 M−1 cm−1) and 4b (λmax = 1330.7 nm, 4577 M−1 cm−1) are among the few phosphorus-centered radicals exhibiting strong absorptions within the NIR-II biowindow.37 Photothermal performance was evaluated using powdered samples in sealed NMR tubes monitored by an IR camera. Under 1064 nm laser irradiation at a powder density of 0.5 W cm−2, compounds 4a and 4b exhibited a rapid temperature increases, reaching 63 °C and 56 °C within 180 s, respectively. In contrast, compounds 3a (λmax = 402.5 nm, 4251 M−1 cm−1) and 3b (λmax = 569.1 nm, 753 M−1 cm−1), along with blank controls, showed negligible heating (Fig. 6 and S24). After five consecutive irradiation cycles, both 4a and 4b powders showed negligible degradation in photothermal performance, demonstrating satisfactory thermal and photostability. This efficient photothermal conversion establishes 4a and 4b as the first phosphorus radical-based organic photothermal materials operating in the NIR-II region. Unfortunately, the high air sensitivity of these radicals limited their practical applications, necessitating the use of an inert atmosphere.
 |
| Fig. 6 (A) The temperature changes of blank, 3a and 4a powders under laser irradiation (1064 nm, 0.5 W cm−2); (B) IR thermal images of 4a powder; (C) Anti-photobleaching properties of 4a powder during five cycles of heating–cooling processes. | |
Conclusions
Building upon the 140 year legacy of the Büchner reaction,1 this work demonstrates that aromatic biradicaloids undergo analogous Büchner-type ring expansions, as exemplified by the transformation of dicarbondiphosphides 1a,b into aromatic 1,3-diphospholium cations 3a,b. DFT calculations prove this process is kinetically accessible and thermodynamically favourable, proceeding through a classical [2 + 1] cycloaddition pathway. The 6π-aromaticity of 3a,b is unequivocally supported by NMR, SC-XRD analysis, and quantum chemical calculations. Crucially, reduction of 3a,b yields stable 7π-electron neutral radicals 4a,b, which exhibit strong NIR-II absorption and efficient photothermal conversion. This study extends the scope of Büchner reaction to biradicaloid systems, and paves the way for designing novel aromaticity-driven main-group transformations with potential applications in photothermal materials.
Author contributions
S. Liu carried out most of the experimental work. S. Zheng and J. Lin assisted with the NMR spectra and X-ray single crystallographic diffraction measurements. Z. Li carried out the computational studies. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
Conflicts of interest
There are no conflicts to declare.
Data availability
CCDC 2464316–2464319 contain the supplementary crystallographic data for this paper.38a–d
All data associated with this article are available from SI. Supplementary information: Synthesis and characterization of compounds, NMR spectra, crystallographic, and computational details. See DOI: https://doi.org/10.1039/d5sc06158j.
Acknowledgements
This work was supported by the National Natural Science Foundation of China (22271315), Guangdong Basic and Applied Basic Research Foundation (2023A1515010092), National Key Research and Development Program of China (2021YFA1500401), Key Laboratory of Guangdong Higher Education Institutions of Northeast Guangdong New Functional Materials (2024KSYS021).
Notes and references
- E. Buchner and T. Curtius, Ber. Dtsch. Chem. Ges., 1885, 18, 2371–2377 CrossRef.
-
(a) C.-Y. Shi, G.-Y. Zhu, Y. Xu, M.-Y. Teng and L.-W. Ye, Chin. Chem. Lett., 2023, 34, 108441 CrossRef CAS;
(b) S. E. Reisman, R. R. Nani and S. Levin, Synlett, 2011, 2011, 2437–2442 CrossRef;
(c) M. P. Doyle and D. C. Forbes, Chem. Rev., 1998, 98, 911–936 CrossRef CAS;
(d) T. Ye and M. A. McKervey, Chem. Rev., 1994, 94, 1091–1160 CrossRef CAS;
(e) A. J. Anciaux, A. Demonceau, A. F. Noels, A. J. Hubert, R. Warin and P. Teyssie, J. Org. Chem., 1981, 46, 873–876 CrossRef CAS.
-
(a) M. Tamm, T. Bannenberg, R. Fröhlich, S. Grimme and M. Gerenkamp, Dalton Trans., 2004, 482–491 RSC;
(b) M. L. H. Green and D. K. P. Ng, Chem. Rev., 1995, 95, 439–473 CrossRef CAS;
(c) M. Tamm, B. Dreβel and R. Fröhlich, J. Org. Chem., 2000, 65, 6795–6797 CrossRef CAS;
(d) M. Tamm, T. Bannenberg, B. Dressel, R. Fröhlich and D. Kunz, Organometallics, 2001, 20, 900–904 CrossRef CAS.
-
(a) E. Ciganek, J. Am. Chem. Soc., 1971, 93, 2207–2215 CrossRef CAS;
(b) O. A. McNamara and A. R. Maguire, Tetrahedron, 2011, 67, 9–40 CrossRef CAS;
(c) T. A. Perera, E. W. Reinheimer and T. W. Hudnall, J. Am. Chem. Soc., 2017, 139, 14807–14814 CrossRef CAS.
-
(a) E. Ciganek, J. Am. Chem. Soc., 1965, 87, 652–653 CrossRef CAS;
(b) E. Ciganek, J. Am. Chem. Soc., 1967, 89, 1454–1458 CrossRef CAS;
(c) K. L. Smith, C. L. Padgett, W. D. Mackay and J. S. Johnson, J. Am. Chem. Soc., 2020, 142, 6449–6455 CrossRef CAS.
-
(a) M. Kira, S. Ishida, T. Iwamoto and C. Kabuto, J. Am. Chem. Soc., 2002, 124, 3830–3831 CrossRef CAS PubMed;
(b) T. Kosai, S. Ishida and T. Iwamoto, Angew. Chem., Int. Ed., 2016, 55, 15554–15558 CrossRef CAS;
(c) T. Eisner, A. Kostenko, F. Hanusch and S. Inoue, Chem.–Eur. J., 2022, 28, e202202330 CrossRef CAS PubMed;
(d) D. Wendel, A. Porzelt, F. A. D. Herz, D. Sarkar, C. Jandl, S. Inoue and B. Rieger, J. Am. Chem. Soc., 2017, 139, 8134–8137 CrossRef CAS PubMed;
(e) H. Zhu, A. Kostenko, D. Franz, F. Hanusch and S. Inoue, J. Am. Chem. Soc., 2023, 145, 1011–1021 CrossRef CAS.
-
(a) L. L. Liu, J. Zhou, L. L. Cao, R. Andrews, R. L. Falconer, C. A. Russell and D. W. Stephan, J. Am. Chem. Soc., 2018, 140, 147–150 CrossRef CAS PubMed;
(b) L. L. Liu, L. L. Cao, J. Zhou and D. W. Stephan, Angew. Chem., Int. Ed., 2019, 58, 273–277 CrossRef CAS PubMed.
-
(a) J. Hicks, P. Vasko, J. M. Goicoechea and S. Aldridge, J. Am. Chem. Soc., 2019, 141, 11000–11003 CrossRef CAS PubMed;
(b) X. Zhang and L. L. Liu, Angew. Chem.,
Int. Ed., 2022, 61, e202116658 CrossRef CAS;
(c) X. Zhang and L. L. Liu, Angew. Chem., Int. Ed., 2021, 60, 27062–27069 CrossRef CAS.
-
(a) L. Zhu, J. Zhang and C. Cui, Inorg. Chem., 2019, 58, 12007–12010 CrossRef CAS;
(b) H. Suzuki, N. Tokitoh and R. Okazaki, J. Am. Chem. Soc., 1994, 116, 11572–11573 CrossRef CAS.
-
(a) Y. Chen, P. Su, D. Wang, Z. Ke and G. Tan, Nat. Commun., 2024, 15, 4579 CrossRef CAS;
(b) Q. Luo, T. Liu, L. Huang, C. Yang and W. Lu, Angew. Chem., Int. Ed., 2024, 63, e202405122 CrossRef CAS PubMed;
(c) L. L. Liu, J. Zhou, R. Andrews and D. W. Stephan, J. Am. Chem. Soc., 2018, 140, 7466–7470 CrossRef CAS PubMed;
(d) T. G. Saint-Denis, T. A. Wheeler, Q. Chen, G. Balázs, N. S. Settineri, M. Scheer and T. D. Tilley, J. Am. Chem. Soc., 2024, 146, 4369–4374 CrossRef CAS PubMed.
-
(a) A. Mizuno, R. Matsuoka, T. Mibu and T. Kusamoto, Chem. Rev., 2024, 124, 1034–1121 CrossRef CAS;
(b) J. A. Meckes, Z. W. Schroeder, D. Sarkar, R. W. Hooper, C. E. Faraday-Smith, A. Brown, R. R. Tykwinski and V. K. Michaelis, J. Am. Chem. Soc., 2025, 147, 7293–7304 CrossRef CAS;
(c) A. Mizuno, R. Matsuoka, S. Kimura, K. Ochiai and T. Kusamoto, J. Am. Chem. Soc., 2024, 146, 18470–18483 CrossRef CAS;
(d) R. Casares, S. Rodríguez-González, Á. Martínez-Pinel, I. R. Márquez, M. T. González, C. Díaz, F. Martín, J. M. Cuerva, E. Leary and A. Millán, J. Am. Chem. Soc., 2024, 146, 29977–29986 CrossRef CAS PubMed;
(e) Z. Zhu, D. Zhang, T. Xiao, Y.-H. Fang, X. Xiao, X.-G. Wang, S.-D. Jiang and D. Zhao, Angew. Chem., Int. Ed., 2023, 62, e202314900 CrossRef CAS;
(f) C. Shu, Z. Yang and A. Rajca, Chem. Rev., 2023, 123, 11954–12003 CrossRef CAS PubMed;
(g) Y. Ishigaki, T. Harimoto, T. Shimajiri and T. Suzuki, Chem. Rev., 2023, 123, 13952–13965 CrossRef CAS PubMed;
(h) Q. Liu, K. Onishi, Y. Miyazawa, Z. Wang, S. Hatano and M. Abe, J. Am. Chem. Soc., 2023, 145, 27089–27094 CrossRef CAS PubMed;
(i) Y. Zhao, Y. Zhang, T. Wang, R. Pei, Y. Zhao, X.-S. Xue and X. Wang, Angew. Chem., Int. Ed., 2024, 63, e202411180 CrossRef CAS;
(j) J. Wang, H. Cui, H. Ruan, Y. Zhao, Y. Zhao, L. Zhang and X. Wang, J. Am. Chem. Soc., 2022, 144, 7978–7982 CrossRef CAS PubMed;
(k) Z. Feng, Y. Chong, S. Tang, Y. Fang, Y. Zhao, J. Jiang and X. Wang, Chem. Sci., 2021, 12, 15151–15156 RSC;
(l) H. Cui, Z.-B. Hu, C. Chen, H. Ruan, Y. Fang, L. Zhang, Y. Zhao, G. Tan, Y. Song and X. Wang, Chem. Sci., 2021, 12, 9998–10004 RSC;
(m) W. Yang, L. Zhang, D. Xiao, R. Feng, W. Wang, S. Pan, Y. Zhao, L. Zhao, G. Frenking and X. Wang, Nat. Commun., 2020, 11, 3441 CrossRef CAS PubMed;
(n) S. Tang, L. Zhang, H. Ruan, Y. Zhao and X. Wang, J. Am. Chem. Soc., 2020, 142, 7340–7344 CrossRef CAS PubMed;
(o) C. Chen, H. Ruan, Z. Feng, Y. Fang, S. Tang, Y. Zhao, G. Tan, Y. Su and X. Wang, Angew. Chem., Int. Ed., 2020, 59, 11794–11799 CrossRef CAS;
(p) H. Han, D. Zhang, Z. Zhu, R. Wei, X. Xiao, X. Wang, Y. Liu, Y. Ma and D. Zhao, J. Am. Chem. Soc., 2021, 143, 17690–17700 CrossRef CAS;
(q) Y. Pilopp, H. Beer, J. Bresien, D. Michalik, A. Villinger and A. Schulz, Chem. Sci., 2025, 16, 876–888 RSC;
(r) T. Jiao, C.-H. Wu, Y.-S. Zhang, X. Miao, S. Wu, S.-D. Jiang and J. Wu, Nat. Chem., 2025, 17, 924–932 CrossRef CAS PubMed.
-
(a) M. Abe, Chem. Rev., 2013, 113, 7011–7088 CrossRef CAS;
(b) J. A. Berson, Science, 1994, 266, 1338–1339 CrossRef CAS;
(c) A. Rajca, Chem. Rev., 1994, 94, 871–893 CrossRef CAS.
-
(a) Z. Feng, S. Tang, Y. Su and X. Wang, Chem. Soc. Rev., 2022, 51, 5930–5973 RSC;
(b) K. Ota and R. Kinjo, Chem. Soc. Rev., 2021, 50, 10594–10673 RSC;
(c) N. M. Gallagher, J. J. Bauer, M. Pink, S. Rajca and A. Rajca, J. Am. Chem. Soc., 2016, 138, 9377–9380 CrossRef CAS PubMed;
(d) E. Zander, J. Bresien, V. V. Zhivonitko, J. Fessler, A. Villinger, D. Michalik and A. Schulz, J. Am. Chem. Soc., 2023, 145, 14484–14497 CrossRef CAS PubMed;
(e) J. Bresien, A. Schulz, L. S. Szych, A. Villinger and R. Wustrack, Dalton Trans., 2019, 48, 11103–11111 RSC;
(f) K. Takeuchi, M. Ichinohe and A. Sekiguchi, J. Am. Chem. Soc., 2011, 133, 12478–12481 CrossRef CAS;
(g) X. Wang, Y. Peng, M. M. Olmstead, J. C. Fettinger and P. P. Power, J. Am. Chem. Soc., 2009, 131, 14164–14165 CrossRef CAS PubMed;
(h) C. Cui, M. Brynda, M. M. Olmstead and P. P. Power, J. Am. Chem. Soc., 2004, 126, 6510–6511 CrossRef CAS PubMed;
(i) H. Cox, P. B. Hitchcock, M. F. Lappert and L. J.-M. Pierssens, Angew. Chem., Int. Ed., 2004, 43, 4500–4504 CrossRef CAS.
-
(a) T. Beweries, R. Kuzora, U. Rosenthal, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2011, 50, 8974–8978 CrossRef CAS;
(b) E. Niecke, A. Fuchs, F. Baumeister, M. Nieger and W. W. Schoeller, Angew. Chem., Int. Ed. Engl., 1995, 34, 555–557 CrossRef CAS.
-
(a) A. Hinz, A. Schulz and A. Villinger, J. Am. Chem. Soc., 2015, 137, 9953–9962 CrossRef CAS PubMed;
(b) A. Hinz, A. Schulz and A. Villinger, Chem. Sci., 2016, 7, 745–751 RSC;
(c) A. Hinz, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2015, 54, 2776–2779 CrossRef CAS.
-
(a) C. Saalfrank, F. Fantuzzi, T. Kupfer, B. Ritschel, K. Hammond, I. Krummenacher, R. Bertermann, R. Wirthensohn, M. Finze, P. Schmid, V. Engel, B. Engels and H. Braunschweig, Angew. Chem., Int. Ed., 2020, 59, 19338–19343 CrossRef CAS;
(b) M. K. Sharma, F. Ebeler, T. Glodde, B. Neumann, H.-G. Stammler and R. S. Ghadwal, J. Am. Chem. Soc., 2021, 143, 121–125 CrossRef CAS PubMed;
(c) T. Sugahara, J.-D. Guo, D. Hashizume, T. Sasamori and N. Tokitoh, J. Am. Chem. Soc., 2019, 141, 2263–2267 CrossRef CAS PubMed;
(d) M. K. Sharma, D. Rottschäfer, T. Glodde, B. Neumann, H.-G. Stammler and R. S. Ghadwal, Angew. Chem., Int. Ed., 2021, 60, 6414–6418 CrossRef CAS.
-
(a) A. Schulz, Dalton Trans., 2018, 47, 12827–12837 RSC;
(b) L. Chojetzki, A. Schulz, A. Villinger and R. Wustrack, Z. Anorg. Allg. Chem., 2020, 646, 614–624 CrossRef CAS;
(c) H. Beer, A. Linke, J. Bresien, A. Villinger and A. Schulz, Inorg. Chem. Front., 2022, 9, 2659–2667 RSC;
(d) J. Rosenboom, L. Chojetzki, T. Suhrbier, J. Rabeah, A. Villinger, R. Wustrack, J. Bresien and A. Schulz, Chem.–Eur. J., 2022, 28, e202200624 CrossRef CAS PubMed;
(e) Z. Li, Y. Hou, Y. Li, A. Hinz and X. Chen, Chem.–Eur. J., 2018, 24, 4849–4855 CrossRef CAS;
(f) X. Chen, L. L. Liu, S. Liu, H. Grützmacher and Z. Li, Angew. Chem., Int. Ed., 2020, 59, 23830–23835 CrossRef CAS PubMed;
(g) S. Liu, Y. Li, J. Lin, Z. Ke, H. Grützmacher, C.-Y. Su and Z. Li, Chem. Sci., 2024, 15, 5376–5384 RSC;
(h) J. Rosenboom, A. Villinger, A. Schulz and J. Bresien, Dalton Trans., 2022, 51, 13479–13487 RSC;
(i) A. Hinz, R. Kuzora, U. Rosenthal, A. Schulz and A. Villinger, Chem.–Eur. J., 2014, 20, 14659–14673 CrossRef CAS;
(j) F. Ebeler, B. Neumann, H.-G. Stammler, I. Fernández and R. S. Ghadwal, J. Am. Chem. Soc., 2024, 146, 34979–34989 CrossRef CAS PubMed.
-
(a) Z. Li, X. Chen, D. M. Andrada, G. Frenking, Z. Benkö, Y. Li, J. R. Harmer, C.-Y. Su and H. Grützmacher, Angew. Chem., Int. Ed., 2017, 56, 5744–5749 CrossRef CAS PubMed;
(b) D. Rottschäfer, B. Neumann, H.-G. Stammler and R. S. Ghadwal, Chem.–Eur. J., 2017, 23, 9044–9047 CrossRef.
-
(a) Z. Li, X. Chen, L. L. Liu, M. T. Scharnhölz and H. Grützmacher, Angew. Chem., Int. Ed., 2020, 59, 4288–4293 CrossRef CAS;
(b) M. T. Scharnhölz, P. Coburger, L. Gravogl, D. Klose, J. J. Gamboa-Carballo, G. Le Corre, J. Bösken, C. Schweinzer, D. Thöny, Z. Li, K. Meyer and H. Grützmacher, Angew. Chem., Int. Ed., 2022, 61, e202205371 CrossRef;
(c) P. Coburger, F. Masero, J. Bösken, V. Mougel and H. Grützmacher, Angew. Chem., Int. Ed., 2022, 61, e202211749 CrossRef CAS PubMed.
- D. Zuber, S. Frei and P. Coburger, ChemistryEurope, 2025, e202500199 CrossRef.
- P. Coburger, D. Zuber, C. Schweinzer and M. Scharnhölz, Chem.–Eur. J., 2024, 30, e202302970 CrossRef CAS PubMed.
- P. L. Floch, Coord. Chem. Rev., 2006, 250, 627–681 CrossRef.
-
(a) P. Bellotti, M. Koy, M. N. Hopkinson and F. Glorius, Nat. Rev. Chem., 2021, 5, 711–725 CrossRef CAS PubMed;
(b) A. Doddi, M. Peters and M. Tamm, Chem. Rev., 2019, 119, 6994–7112 CrossRef CAS;
(c) M. N. Hopkinson, C. Richter, M. Schedler and F. Glorius, Nature, 2014, 510, 485–496 CrossRef CAS PubMed.
-
(a) Y. Schulte, C. Wölper, S. M. Rupf, M. Malischewski, D. J. SantaLucia, F. Neese, G. Haberhauer and S. Schulz, Nat. Chem., 2024, 16, 651–657 CrossRef CAS PubMed;
(b) D. Shi, X. Tian, S. Wu, Y. Huang, J. Xu, Z. Zhai, L. Xie, Y. Li and Z. Sun, Chin. J. Chem., 2025, 43, 531–535 CrossRef CAS;
(c) Y. Schulte, B. L. Geoghegan, C. Helling, C. Wölper, G. Haberhauer, G. E. Cutsail, III and S. Schulz, J. Am. Chem. Soc., 2021, 143, 12658–12664 CrossRef CAS;
(d) W. Yang, K. E. Krantz, L. A. Freeman, D. A. Dickie, A. Molino, G. Frenking, S. Pan, D. J. D. Wilson and R. J. Gilliard Jr., Angew. Chem., Int. Ed., 2020, 59, 3850–3854 CrossRef CAS;
(e) Y. Tian, K. Uchida, H. Kurata, Y. Hirao, T. Nishiuchi and T. Kubo, J. Am. Chem. Soc., 2014, 136, 12784–12793 CrossRef CAS PubMed;
(f) T. Kitagawa, K. Ogawa and K. Komatsu, J. Am. Chem. Soc., 2004, 126, 9930–9931 CrossRef CAS;
(g) H. Sitzmann and R. Boese, Angew. Chem., Int. Ed. Engl., 1991, 30, 971–973 CrossRef.
-
(a) A. M. Smith, M. C. Mancini and S. Nie, Nat. Nanotechnol., 2009, 4, 710–711 CrossRef CAS PubMed;
(b) H. Lin, S. Gao, C. Dai, Y. Chen and J. Shi, J. Am. Chem. Soc., 2017, 139, 16235–16247 CrossRef CAS PubMed.
-
(a) Q. Zhao, C. Wu, Y. Gao, J. Long, W. Zhang, Y. Chen, Y. Yang, Y. Luo, Y. Lai, H. Zhang, X. Chen, F. Li and S. Li, Advanced Science, 2025, 12, 2411733 CrossRef CAS;
(b) J. Zhang, H. Luo, W. Ma, J. Lv, B. Wang, F. Sun, W. Chi, Z. Fang and Z. Yang, Advanced Science, 2025, 12, 2500293 CrossRef CAS;
(c) X. Tian, M. Wang, L. Ye, Y. Gao, G. Yu, M. Lv, X. Ma, L. Ma and Z. Sun, Precis. Chem., 2025, 3, 389–398 CrossRef CAS;
(d) B. Tang, W.-L. Li, Y. Chang, B. Yuan, Y. Wu, M.-T. Zhang, J.-F. Xu, J. Li and X. Zhang, Angew. Chem., Int. Ed., 2019, 58, 15526–15531 CrossRef CAS;
(e) S. Kong, L. Yang, Q. Sun, T. Wang, R. Pei, Y. Zhao, W. Wang, Y. Zhao, H. Cui, X. Gu and X. Wang, Angew. Chem., Int. Ed., 2024, 63, e202400913 CrossRef CAS.
- X. Zhang, X. Chen, H. Zhai, S. Liu, C. Hu, L. L. Liu, S. Wang and Z. Li, Dalton Trans., 2020, 49, 6384–6390 RSC.
- X. Chen, C. Hu, X. Zhang, S. Liu, Y. Mei, G. Hu, L. L. Liu, Z. Li and C.-Y. Su, Inorg. Chem., 2021, 60, 5771–5778 CrossRef CAS PubMed.
-
(a) P. Pyykkö and M. Atsumi, Chem.–Eur. J., 2009, 15, 12770–12779 CrossRef PubMed;
(b) F. H. Allen, O. Kennard, D. G. Watson, L. Brammer, A. G. Orpen and R. Taylor, J. Chem. Soc. Perkin Trans. 2, 1987, S1–S19 RSC.
-
(a) C. C. Chong, B. Rao, R. Ganguly, Y. Li and R. Kinjo, Inorg. Chem., 2017, 56, 8608–8614 CrossRef CAS;
(b) R. Yadav, A. Sharma, B. Das, C. Majumder, A. Das, S. Sen and S. Kundu, Chem.–Eur. J., 2024, 30, e202401730 CrossRef CAS.
- M. J. Frisch and et al., Gaussian 16, Revision C.01, 2016 Search PubMed.
- G. Knizia and J. E. M. N. Klein, Angew. Chem., Int. Ed., 2015, 54, 5518–5522 CrossRef CAS.
- A. Bondi, J. Phys. Chem., 1964, 68, 441–451 CrossRef CAS.
- Y. Pilopp, J. Bresien, K. P. Lüdtke and A. Schulz, Chem.–Eur. J., 2025, 31, e202403893 CrossRef CAS.
- C. Xu and K. Pu, Chem. Soc. Rev., 2021, 50, 1111–1137 RSC.
-
(a) J.-C. Liu, T. Li, H. Yu, J. Y. Huang, P.-X. Li, Z.-Y. Ruan, P.-Y. Liao, C. Ou, Y. Feng and M.-L. Tong, Angew. Chem., Int. Ed., 2025, 64, e202413805 CrossRef CAS PubMed;
(b) T. Li, J.-C. Liu, E.-P. Liu, B.-T. Liu, J.-Y. Wang, P.-Y. Liao, J.-H. Jia, Y. Feng and M.-L. Tong, Chem. Sci., 2024, 15, 1692–1699 RSC;
(c) N. Yang, S. Song, C. Liu, J. Ren, X. Wang, S. Zhu and C. Yu, Biomater. Sci., 2022, 10, 4815–4821 RSC;
(d) Y. Chen, H. Yu, Y. Wang, P. Sun, Q. Fan and M. Ji, Biomater. Sci., 2022, 10, 2772–2788 RSC.
-
(a) B. Das, A. Makol and S. Kundu, Dalton Trans., 2022, 51, 12404–12426 RSC;
(b) Y. H. Budnikova, Dokl. Chem., 2022, 507, 229–259 CrossRef CAS.
-
(a) S. Liu S. Zheng J. Lin H. Grützmacher C.-Y. Su and Z. Li, CCDC 2464316: Experimental Crystal Structure Determination, 2025, DOI:10.5517/ccdc.csd.cc2nqb2t;
(b) S. Liu S. Zheng J. Lin H. Grützmacher C.-Y. Su and Z. Li, CCDC 2464317: Experimental Crystal Structure Determination, 2025, DOI:10.5517/ccdc.csd.cc2nqb3v;
(c) S. Liu S. Zheng J. Lin H. Grützmacher C.-Y. Su and Z. Li, CCDC 2464318: Experimental Crystal Structure Determination, 2025, DOI:10.5517/ccdc.csd.cc2nqb4w;
(d) S. Liu S. Zheng J. Lin H. Grützmacher C.-Y. Su and Z. Li, CCDC 2464319: Experimental Crystal Structure Determination, 2025, DOI:10.5517/ccdc.csd.cc2nqb5x.
|
This journal is © The Royal Society of Chemistry 2025 |
Click here to see how this site uses Cookies. View our privacy policy here.