Direct Suzuki–Miyaura cross-coupling of C(sp2)–B(dan) bonds: designed in pursuit of usability

Abstract

We developed practical reaction conditions and a procedure for the direct Suzuki–Miyaura cross-coupling (SMCC) of C(sp2)–B(dan) bonds. Below are important notes to successfully execute the direct SMCC: (1) dehydrated conditions that exclude as much H2O as possible are required, (2) LiOH is the base of choice, (3) dppf is the ligand of choice when using electron-deficient (hetero)aryl halides [(Het)ArX], (4) P(t-Bu)3 is the ligand of choice when using electron-rich (Het)ArX, and (5) COD is the ligand of choice when using (Het)ArX with a protic functional group such as NH2 and OH. Taking heed of these notes enables the direct SMCC of the C(sp2)–B(dan) bond by using a wide range of substrates with diverse functional groups, affording the following series of coupling products: Ar–Ar, Ar–HetAr, HetAr–HetAr, alkenyl–Ar, and alkenyl–alkenyl. Sequentially executing distinct types of palladium-catalyzed CCs, such as Buchwald–Hartwig CC + SMCC, Mizoroki–Heck reaction + SMCC, and Sonogashira–Hagihara CC + SMCC, allows access to complex π-conjugated molecules. The B(dan) moiety also exhibits outstanding compatibility with Wittig olefination and Sc(OTf)3-catalyzed acetal-forming reactions, enabling molecular transformations that are otherwise impracticable when using ArB(OH)2. Mechanistic studies suggest the involvement of both path A, wherein a boronate species reacts with an arylpalladium halide, and path B, wherein a boron compound reacts with an arylpalladium hydroxide, at the stage of the transmetalation.

Graphical abstract: Direct Suzuki–Miyaura cross-coupling of C(sp2)–B(dan) bonds: designed in pursuit of usability

Supplementary files

Article information

Article type
Research Article
Submitted
03 Feb 2025
Accepted
08 Apr 2025
First published
10 Apr 2025

Org. Chem. Front., 2025, Advance Article

Direct Suzuki–Miyaura cross-coupling of C(sp2)–B(dan) bonds: designed in pursuit of usability

H. Andoh, R. Nakagawa, T. Akutagawa, E. Katata and T. Tsuchimoto, Org. Chem. Front., 2025, Advance Article , DOI: 10.1039/D5QO00230C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements