Preparation of a CoS2/g-C3N4 composite catalyst and its application in photocatalytic reduction of CO2†
Abstract
As a greenhouse gas, CO2 is also a rich carbon resource. Photocatalytic reduction of CO2 into usable chemicals using sunlight can not only alleviate the increasingly severe greenhouse effect but also provide a promising method for achieving energy recycling to address the problem of energy shortage. Herein, a CoS2 cocatalyst was grown on g-C3N4 nanosheets by a simple in situ growth method, and the composite catalyst was applied for the photocatalytic reduction of CO2. In the catalyst, CoS2 nanoparticles were uniformly distributed on the g-C3N4 nanosheets. The g-C3N4 nanosheet structure increased the specific surface area of the material, thereby facilitating the exposure of CoS2 sites. Moreover, as a non-precious metal cocatalyst, CoS2 could replace some precious metal cocatalysts to improve the separation efficiency of photo-generated charges in g-C3N4. The prepared catalyst exhibited efficient and stable photocatalytic performance for the reduction of CO2 and had high selectivity for CO generation. This work provides new insights into designing a low-cost, high-performance photocatalyst for the photocatalytic reduction of CO2.