Issue 3, 2025

Rb-promoted Fe/CeO2 nanocatalyst for aniline conversion into azoxybenzene, DFT calculations and mechanism

Abstract

Selectivity control of aniline oxidation and low reactant conversion in traditional synthesis methods are great challenges, and it is desirable to develop a green, low-cost and highly efficient catalytic route toward value-added products. Herein, an Rb-promoted Fe/CeO2 nanocatalyst was prepared to understand the effects of Rb-promoter on the catalytic performance for the selective oxidation of aniline to azoxybenzene using H2O2 as an oxidant. The 0.1 M Rb-4% Fe/CeO2 (Rb–Fe/CeO2) catalyst showed a high aniline conversion of 100% with 91% selectivity of azoxybenzene. This is because the existence of Rb contributes to the electron transportation property, decreases activation energy and leads to lattice distortion of Fe/CeO2 and further formation of oxygen vacancies and Ce3+, which contributes to improving the activity of Fe/CeO2 nanocatalysts for aniline conversion reaction. The Rb used to modify Fe/CeO2 nanocatalysts can not only passivate the strong Brønsted acid sites and stability of Fe/CeO2 but also enhance the Fe dispersion and induce an electron-rich chemical environment for the supported Fe species and promote the activation of the substrate. All these effects lead to the desirable catalytic performance. The increased basic strength of the cation-promoted catalyst improves the electron density of the active Fe species, resulting in a higher yield of the desired aromatic azo compounds. This compensates for electronic deficiencies in the Fe, enhancing its catalytic activity without interference. Experiments were conducted as a function of catalyst loading (20–100 mg), time (2–24 h), temperature (25–100 °C), types of solvent and solvent amount (0.5–2 ml) in 50 ml round bottom flask with reflux condenser. Our work proposes a facile approach to develop and promote non-noble metal catalysts for the effective conversion of aniline into azoxybenzene under mild reaction conditions.

Graphical abstract: Rb-promoted Fe/CeO2 nanocatalyst for aniline conversion into azoxybenzene, DFT calculations and mechanism

Article information

Article type
Paper
Submitted
26 Sep 2024
Accepted
14 Oct 2024
First published
18 Dec 2024

New J. Chem., 2025,49, 921-934

Rb-promoted Fe/CeO2 nanocatalyst for aniline conversion into azoxybenzene, DFT calculations and mechanism

A. Khan, S. Xiao, Y. Xie, S. Kaya, S. Zareen, N. Muhammad, K. Parveen and D. Xu, New J. Chem., 2025, 49, 921 DOI: 10.1039/D4NJ04200J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements