Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Mechanochemical synthesis of rock salt-type Na2CaSnS4 as a sodium-ion conductor

Hamdi Ben Yahia *, Atsushi Sakuda and Akitoshi Hayashi *
Department of Applied Chemistry, Graduate School of Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan. E-mail: benyahia_hamdi@omu.ac.jp; akitoshihayashi@omu.ac.jp; Tel: +81-72-254-9334

Received 2nd April 2024 , Accepted 17th November 2024

First published on 3rd December 2024


Abstract

Na2CaSnS4 was prepared by mechanochemical synthesis from a mixture of Na2S, CaS, and SnS2. The crystal structure was determined from X-ray powder diffraction data. The chemical composition was confirmed by energy dispersive X-ray spectroscopy, and the ionic conductivity was measured using electrochemical impedance spectroscopy. Na2CaSnS4 crystallizes with a rock salt-type structure, space group Fm[3 with combining macron]m, a = 5.6842 (3) Å, V = 183.66 (2) Å3, and Z = 1. All the cations are statistically disordered over a unique crystallographic site and are octahedrally coordinated to the sulfur atoms. The ionic conductivity of Na2CaSnS4 is 4.2 × 10−8 S cm−1 (Ea = 0.6 eV) at 33 °C.


1. Introduction

Solid electrolytes are materials that exhibit proton, lithium, sodium, potassium, silver, fluoride, or oxide ion conduction. They have been widely used in several all-solid-state electrochemical devices such as gas sensors, capacitors, smart windows, fuel cells, and batteries. In the latter, it is desirable to have a solid electrolyte exhibiting high ionic conductivity in the order of 10−2–10−3 S cm−1 at room temperature to be comparable to liquid electrolytes. Nevertheless, materials with lower ionic conductivities can be implemented in batteries. These solid electrolytes should also be dense with a negligible electronic conductivity and a wide electrochemical stability window.1

For all solid-state sodium ion batteries (ASSBs), three types of electrolytes are known (i.e. polymers, inorganic compounds, and their combinations). Among the crystalline inorganic compounds, one can find oxides, sulfides, and boron hydrides.2 Examples thereof are the oxides sodium-beta-alumina Na-β′′-Al2O3,3 the NASICON-type compounds Na1+xZr2SixP3−xO12 (0 ≤ x ≤ 3),4 the layered-type compounds Na2M2TeO6 (M = Ni, Co, Zn, Mg);5 the sulfides Na6MS4 (M2+ = Mg, Zn),6 Na5MS4 (M3+ = Al, Ga, In),7–9 Na4MS4 (M4+ = Si, Ge, Sn),10–12 Na3BS3,13 Na3MS4 (M5+ = P, As, Sb),14–16 and Na2MS4 (M6+ = Mo, W);17,18 and the boron hydrides Na2(CB11H12)(CB9H10),19 Na3BH4B12H12,20 or Na4(CB11H12)2(B12H12).21 The ionic conductivity of these end member materials does not exceed 4 × 10−3 S cm−1 at room temperature. However, in binary systems such as that of Na3SbS4–Na2WS4, it can reach up to 10−2 S cm−1 at room temperature.22

The mechanical milling technique has attracted much attention as a procedure for preparing amorphous, crystalline, and composite materials. Indeed, the intensive grinding of particulates, especially through high-energy milling, provides conditions favorable for initiating changes in the particulates. These changes include solid state chemical reactions,23,24 polymorphic transformations,25,26 and very often amorphization.27 Several binary, ternary, quaternary, and quinary chalcogenide compounds easily form on high energy grinding.28 Numerous examples thereof exist (see the Zn–S, Se–S; Li–Si–S, Li–P–S; Li–Si–N–S; and Li–P–Si–N–S systems).29–34

In the A2+M2+SnS4 family of compounds, more than forty compounds were reported so far. None of them contains calcium and only Na2MnSnS4 crystallizes in the rocksalt-type structure.35 Therefore, in the present work we report the mechanochemical synthesis of Na2CaSnS4, which is the second member of this family that crystallizes with a rocksalt-type structure. The crystal structure was determined from X-ray powder diffraction data. The average composition was confirmed by EDX and the ionic conductivity was measured by electrochemical impedance spectroscopy. The crystallographic data of all the A2+M2+SnS4 compounds were also reviewed.

2. Experimental

2.1. Synthesis

The Na2CaSnS4 sample was prepared by the mechanochemical synthesis route from a stoichiometric mixture of Na2S (>99.1%, Nagao, Japan), CaS (99.95%, Kishida), and SnS2 (>99.5%, Mitsuwa Chem.). As for Na2MnSnS4,35 the starting materials (0.5 g in total) were mixed in an agate mortar in a dry Ar glove box. The mixtures were placed in 45 mL zirconia milling pots with 90 g of zirconia balls of 4 mm diameter and mechanically milled using a planetary ball mill apparatus (Pulverisette 7, Fritsch). The rotational speed and milling time were set at 500 rpm and 48 h, respectively without breaks. The obtained dark green powder is hygroscopic.

2.2. Electron microprobe analyses

Semiquantitative EDX analyses of the green powder were carried out on several particles with a JSM-6610A (JEOL) scanning electron microscope (SEM). The experimentally observed Na/Ca/Sn/S atomic ratios were close to 2[thin space (1/6-em)]:[thin space (1/6-em)]1[thin space (1/6-em)]:[thin space (1/6-em)]1[thin space (1/6-em)]:[thin space (1/6-em)]4 as expected for Na2CaSnS4.

2.3. X-ray powder diffraction measurements

XRPD patterns were measured with a Rigaku Smartlab diffractometer using Bragg-Brentano geometry with Cu-Kα radiations. The X-ray data were collected in the 2θ range from 5–80° with a step of 0.01°. The X-ray diffraction data were refined by a Le Bail profile analysis using the Jana2006 program package.36 Since the powder contains an amorphous component, the background was estimated manually, and the peak shapes were described by a pseudo-Voigt function varying four profile coefficients.

2.4. Electrochemical impedance spectroscopy (EIS)

The Na2CaSnS4 sample was characterized by EIS. The powder sample was pelletized at 360 MPa by uniaxial pressing. Gold electrodes were deposited on each face of the pellet using a sputtering apparatus (Quick Coater SC-701MKII Advance; Sanyu Electron Corp.) in an Ar-filled glove box. The conductivity of the sample was then measured on this pellet by an alternating current (AC) impedance technique using an impedance analyzer (SI-1260; Solartron, Metrology, UK) in the frequency range 1.0 × 107–0.1 Hz and at an applied voltage of 50 mV.

3. Results and discussion

3.1. Structure refinement

The search and match procedure using the ICDD database revealed that the XRPD pattern of the milled Na2CaSnS4 sample was very similar to that of NaCl0.8Br0.2. The latter crystallizes in the rock salt NaCl-type structure (S. G. Fm[3 with combining macron]m). Consequently, a full pattern matching was performed which led to the cell parameters a = 5.6842 (3) Å and V = 183.66 (2) Å3. For the Rietveld refinement, the cations Na+, Ca2+, and Sn4+ were set at the 4b Wyck. position (1/2, 1/2, 1/2) and the anions were set at the 4a Wyck. position (0, 0, 0). Restrictions on the occupancies and displacement parameters of Na1, Ca1, and Sn1 were applied. The final residual factors and the refined atomic positions are given in Tables 1 and 2, respectively. Fig. 1 shows an excellent agreement between the experimental and calculated patterns. Furthermore, the Na/Ca/Sn/S atomic ratios of 2[thin space (1/6-em)]:[thin space (1/6-em)]1[thin space (1/6-em)]:[thin space (1/6-em)]1[thin space (1/6-em)]:[thin space (1/6-em)]4 were confirmed by EDX analyses (Fig. 2). Furthermore, the EDX mapping images showed a homogeneous elemental distribution (Fig. S1).
Table 1 Crystallographic data and structure refinement for Na2CaSnS4
Crystal data
Chemical formula Na2CaSnS4
M r 333
Crystal system Cubic
Space group Fm[3 with combining macron]m
Temperature (K) 293
a (Å) 5.6842 (3)
V3) 183.66 (2)
Z 1
Radiation type Cu-Kα

Data collection
Diffractometer Rigaku smartlab
Data collection mode Bragg Brentano
2θ values (°) 2θmin = 10
2θmax = 110
2θstep = 0.01

Refinement
R factors and goodness of fit R p = 0.013
R wp = 0.017
R exp = 0.011
R(F) = 0.033
R B = 0.032
χ 2 = 2.190
No. of parameters 9


Table 2 Atomic position and equivalent isotopic displacement parameters for Na2CaSnS4
Atom Wyck. Occ. x y z U iso2)
Na1 4b 0.5 1/2 1/2 1/2 0.0605(4)
Ca1 4b 0.25 1/2 1/2 1/2 0.0605(4)
Sn1 4b 0.25 1/2 1/2 1/2 0.0605(4)
S1 4a 1 0 0 0 0.0555(6)



image file: d4mr00028e-f1.tif
Fig. 1 Observed (cross), calculated (solid line) and difference (bottom) XRPD patterns (Cu-Kα radiation) for Na2CaSnS4.

image file: d4mr00028e-f2.tif
Fig. 2 EDX analysis and SEM micrographs of the milled Na2CaSnS4 sample.

3.2. Crystal structure of Na2CaSnS4

The title compound Na2CaSnS4 is isostructural to Ag2SnIISnIVS4 (AgSnS2) which crystallizes in the rock salt-type structure. The crystal structure is depicted in Fig. 3. The sulfur atoms form a cubic close packing with ABC-type arrangement. The statistically disordered sodium, calcium, and tin atoms occupy the octahedral interstices. The Na–S and Ca–S distances of 2.8421(3) Å are in good agreement with 2.86 Å and 2.84 Å, values estimated from the effective ionic radii of the six-coordinated Na+, Ca2+, and S2−.74 However, the Sn–S distance of 2.8421(3) Å is too large when compared to the 2.53 Å value estimated from the effective ionic radii of the six-coordinated Sn4+ and S2−. It should be mentioned that for octahedrally coordinated Sn in SnS2[thin space (1/6-em)]75 and Cu4SnS6,76 the Sn–S distances are 2.631 Å and 2.595 Å, respectively. The bond valence sums (BVSs) of 1.17, 2.08, and 1.82 for Na+, Ca2+, and Sn4+, respectively confirm that Sn4+ is strongly under bonded.77
image file: d4mr00028e-f3.tif
Fig. 3 Crystal structure of Na2CaSnS4.

The crystallographic data of all the A2MSnS4 compounds are reported in Table 3. Only Na2CaSnS4 and Ag2SnIISnIVS4 crystallize in the rock salt-type structure. Furthermore, in the Na2MSnS4 series only 4 compounds are known (M = Mg, Zn, Cd, and Sn). A careful examination of their crystal structures indicated that in the phases with Zn2+ or Cd2+ the cations are tetrahedrally coordinated, whereas in the phases with Mg2+ or Sn2+ the cations are octahedrally coordinated. Moreover, a group-subgroup relationship exists between R[3 with combining macron]m and Fm[3 with combining macron]m which suggests the existence of a structural relationship between these phases. Indeed, Heppke & Lerch confirmed that the Na2MgSnS4 (NaMg1/2Sn1/2S2; hR4, R[3 with combining macron]m) structure is derived from the NaCl-type structure.65 In this structure, the sodium atom occupies the 3b Wyck. position at (0, 0, 1/2) whereas the Mg and Sn are statistically disordered over the 3a Wyck. position at (0, 0, 0). Since in the rock salt structure all cations are disordered over a unique crystallographic site, it is concluded that the change in the crystal structure from the rocksalt-type (cF8, Fm[3 with combining macron]m) to the layered-type (hR4, R[3 with combining macron]m) is mainly due to the partial ordering of the cations, which is driven by the difference in the size of the cations and the synthesis conditions. Such a phase transition from Fm[3 with combining macron]m to R[3 with combining macron]m was observed in many compounds prepared by mechanochemical synthesis and subjected to heat treatments (i.e. LiVO2, Na2TiS3, and Na2MnSnS4);35,78,79 however it was not observed in Na2CaSnS4 which decomposed on heating.

Table 3 Crystallographic data of the A2+M2+SnS4 compounds (A+ = Li, Na, K, Rb, Cu, Ag, and Tl; M2+ = Mg, Mn, Fe, Co, Zn, Cd, Sn, Sr, Ba, Eu, and Hg)
S. G. Compound a (Å) b (Å) c (Å) α (°) β (°) γ (°) V3) Ref.
a This work.
Pn Li2MnSnS4 6.4143(6) 6.8475(6) 8.0078(7) 90 89.980(6) 90 351.71 37
Pna21 Li2MnSnS4 13.7036(3) 8.0023(2) 6.4155(2) 90 90 90 703.52 37
Pn Li2FeSnS4 6.3727(3) 6.7776(3) 7.9113(4) 90 90[thin space (1/6-em)]207(3) 90 341.70 38
Pn Li2CoSnS4 6.3432(2) 6.7184(2) 7.9404(3) 90 89.988(2) 90 338.38 39
Pn Li2ZnSnS4 6.3728(13) 6.7286(13) 7.9621(16) 90 90(3) 90 341.42 40
Pmmn Li2CdSnS4 7.9654(15) 6.4917(15) 6.9685(12) 90 90 90 360.33 41
Pmn21 Li2CdSnS4 7.9555(3) 6.9684(3) 6.4886(3) 90 90 90 359.71 42
P[3 with combining macron]m1 Li2SnIISnIVS4 3.67 3.67 7.9 90 90 120 92.15 30
R[3 with combining macron]m Li2SnIISnIVS4 3.741(1) 3.741(1) 23.89(10) 90 90 120 289.39 43
Pmn21 Li2HgSnS4 7.9400(17) 6.9310(15) 6.5122(14) 90 90 90 358.38 44
I[4 with combining macron]2m Cu2MnSnS4 5.49 5.49 10.72 90 90 90 323.10 45
I[4 with combining macron]2m Cu2FeSnS4 5.47 5.47 10.747 90 90 90 321.56 46
P[4 with combining macron] Cu2FeSnS4 5.414(3) 5.414(3) 5.414(3) 90 90 90 158.69 47
I[4 with combining macron]2m Cu2CoSnS4 5.402 5.402 10.805 90 90 90 315.31 48
I[4 with combining macron]2m Cu2ZnSnS4 5.4332(2) 5.4332(2) 10.8402(6) 90 90 90 320.00 49
I[4 with combining macron] Cu2ZnSnS4 5.4335(3) 5.4335(3) 10.8429(10) 90 90 90 320.11 50
I[4 with combining macron]2m Cu2ZnSnS4 5.436 5.436 10.85 90 90 90 320.62 51
Pmn21 Cu2ZnSnS4 7.5385 6.4304 6.2038 90 90 90 300.73 52
I[4 with combining macron]2m Cu2CdSnS4 5.582 5.582 10.86 90 90 90 338.38 51
P31 Cu2SrSnS4 6.29 6.29 15.57(8) 90 90 120 533.48 53
P3221 Cu2SrSnS4 6.29 6.29 15.57(8) 90 90 120 533.48 54
Ama2 Cu2SrSnS4 10.514(3) 10.456(3) 6.425(2) 90 90 90 706.32 55
P31 Cu2BaSnS4 6.367 6.367 15.833 90 90 120 555.86 56
P3221 Cu2BaSnS4 6.3711(3) 6.3711(3) 15.8425(12) 90 90 120 556.90 57
Ama2 Cu2EuSnS4 10.47930(10) 10.3610(2) 6.40150(10) 90 90 90 695.05 58
I[4 with combining macron]2m Cu2HgSnS4 5.566 5.566 10.88 90 90 90 337.07 51
Pc Ag2MnSnS4 6.6510(10) 6.9430(10) 10.536(2) 90 129.145(3) 90 377.32 59
I[4 with combining macron]2m Ag2FeSnS4 5.74(3) 5.74(3) 10.96(5) 90 90 90 361.11 60
I[4 with combining macron]2m Ag2ZnSnS4 5.786(4) 5.786(4) 10.829(6) 90 90 90 362.53 61
Pn Ag2CdSnS4 6.7036(2) 7.0375(3) 8.2166(3) 90 901[thin space (1/6-em)]577(9) 90 387.63 62
Pmn21 Ag2CdSnS4 8.2137(4) 7.0403(4) 6.7033(2) 90 90 90 387.63 62
Fm[3 with combining macron]m Ag2SnIISnIVS4 5.506(2) 5.506(2) 5.506(2) 90 90 90 166.92 63
I222 Ag2BaSnS4 7.127(3) 8.117(3) 6.854(3) 90 90 90 396.50 64
R[3 with combining macron]m Na2MgSnS4 3.74963(11) 3.74963(11) 19.9130(6) 90 90 120 242.45 65
Fm[3 with combining macron]m Na2CaSnS4 5.6842 (3) 5.6842 (3) 5.6842 (3) 90 90 90 183.66
Fm[3 with combining macron]m Na2MnSnS4 5.4368(2) 5.4368(2) 5.4368(2) 90 90 90 160.71 35
R[3 with combining macron]m Na2MnSnS4 3.7523 (4) 3.7523 (4) 19.883 (2) 90 90 120 242.44 35
I[4 with combining macron] Na2ZnSnS4 6.4835(6) 6.4835(6) 9.1337(10) 90 90 90 383.94 66
C2 Na2ZnSnS4 9.1749(6) 9.1325(4) 6.4873(5) 90 134.999(4) 90 384.37 67
I[4 with combining macron]2m Na2ZnSnS4 6.4789(15) 6.4789(15) 9.121(2) 90 90 90 382.86 67
C2 Na2CdSnS4 9.282(1) 9.421(3) 6.593(9) 90 134.83(9) 90 408.88 68
R[3 with combining macron]m Na2SnIISnIVS4 3.69 3.69 25.54 90 90 120 301.16 69
C2/c K2CdSnS4 11.021(5) 11.030(5) 15.151(10) 90 100.416(12) 90 1811.42 70
R3 K2SnIISnIVS4 3.67 3.67 25.61 90 90 120 298.73 69
R3 Rb2SnIISnIVS4 3.76 3.76 24.33 90 90 120 297.88 69
P21212 Au2BaSnS4 10.982(4) 11.093(4) 6.652(4) 90 90 90 810.37 71
C2221 Au2BaSnS4 6.6387(3) 11.0605(7) 10.9676(6) 90 90 90 805.32 72
I[4 with combining macron]2m Tl2HgSnS4 7.8571(6) 7.8571(6) 6.6989(7) 90 90 90 413.5(1) 73


3.3. Ionic conductivity of Na2CaSnS4

AC impedance measurements were performed on a powder compacted pellet of Na2CaSnS4. The Nyquist plot, which consists of a semicircle in the high-frequency region and a spike in the low-frequency region, is depicted in Fig. 4a. The profile indicates that the sample is a typical ionic conductor, and the total resistance of the sample, including the bulk and grain boundary resistances, was used to determine its conductivity. Fig. 4b shows the temperature dependence of the conductivities of Na2CaSnS4. The ionic conductivity of 4.2 × 10−8 S cm−1 (Ea = 0.6 eV) at 33 °C is much lower than that of the cubic Na3PS4 compound (2 × 10−4 S cm−1 at RT).14 Although both compounds crystallize in the cubic system and have similar chemical compositions (M4S4 with M = Na, Ca, Sn, P), there is a large difference between the ionic conductivities. This is mainly due to the difference in the crystal structures. It seems that the Ca/Sn/Na disorder within the rock salt structure hinders the Na diffusion, whereas the order of Na and P within Na3PS4 enables fast Na diffusion. In the future, the synthesis of cation deficient rock salt-type compounds will be performed to enhance the sodium diffusion as it was done with the rock salt compound Ag3.8Sn3S8.80 It should be noted that the relative density of the pellet used for EIS measurements was only 72%. This value could not be improved neither by applying higher pressures nor by sintering the pellets at high temperatures. Indeed, our prepared sample is metastable. It is a composite material formed of a crystalline phase (rocksalt-type) and an amorphous phase (see in Fig. 1 the hallow feature at low angles).
image file: d4mr00028e-f4.tif
Fig. 4 (a) Typical impedance spectrum acquired at 98.4 °C for the Na2CaSnS4 sample and (b) the temperature dependence of the conductivities.

4. Conclusions

The chalcogenide family of compounds A2BCD4 (A+ = monovalent cation, B2+ = divalent cation, C4+ = tetravalent cation, and D2− = chalcogen) contains at least 150 members. In this work we demonstrated that the facile mechanochemical synthesis route enables the synthesis of the new member Na2CaSnS4, which is the first quaternary compound of this family that contains calcium and the second to crystallize with a rock salt-type structure. Its ionic conductivity is relatively low when compared with other sulfide ionic conductors such as Na3PS4. Therefore, it would be necessary to prepare other cation deficient phases to enhance the ionic conductivity. This will be conducted in the near future.

Data availability

Our data will be available on request.

Author contributions

H. Ben Yahia designed and performed the experiments and wrote the manuscript and A. Sakuda and A. Hayashi secured the research funds and revised the manuscript.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by MEXT/JSPS KAKENHI Grant Numbers JP19H05812, JP21H04625 and JP23H04633 and the MEXT program: Data Creation and Utilization-Type Material Research and Development Project Grant Number JPMXP1122712807. We are grateful to Dr Furukawa for his support with EDX analyses and to the reviewers for providing valuable feedback and constructive criticism on this research paper.

References

  1. S. Mulmi and V. Thangadurai, in Solid Electrolytes for Advanced Applications, Springer International Publishing, Cham, 2019, pp. 3–24 Search PubMed.
  2. H.-L. Yang, B.-W. Zhang, K. Konstantinov, Y.-X. Wang, H.-K. Liu and S.-X. Dou, Adv. Energy Sustainability Res., 2021, 2, 2000057 CrossRef CAS.
  3. M. Wolf, Solid State Ionics, 1984, 13, 33–38 CrossRef CAS.
  4. J. B. Goodenough, H. Y.-P. Hong and J. A. Kafalas, Mater. Res. Bull., 1976, 11, 203–220 CrossRef CAS.
  5. M. A. Evstigneeva, V. B. Nalbandyan, A. A. Petrenko, B. S. Medvedev and A. A. Kataev, Chem. Mater., 2011, 23(5), 1174–1181 CrossRef CAS.
  6. H. Ben Yahia, K. Motohashi, A. Sakuda and A. Hayashi, Inorg Chem., 2023, 62(26), 10440–10449 CrossRef CAS PubMed.
  7. K. Motohashi, A. Nasu, T. Kimura, C. Hotehama, A. Sakuda, M. Tatsumisago and A. Hayashi, Electrochemistry, 2022, 90, 22–00037 Search PubMed.
  8. K. Denoue, D. Le Coq, C. Calers, A. Gautier, L. Verger and L. Calvez, Mater. Res. Bull., 2021, 142, 111423 CrossRef CAS.
  9. S. Balijapelly, P. Sandineni, A. Adhikary, N. N. Gerasimchuk, A. V. Chernatynskiy and A. Choudhury, Dalton Trans., 2021, 50, 7372–7379 RSC.
  10. S. Harm, A.-K. Hatz, C. Schneider, C. Hoefer, C. Hoch and B. v. Lotsch, Front. Chem., 2020, 8, 90 CrossRef CAS PubMed.
  11. L. Gao, G. Bian, Y. Yang, B. Zhang, X. Wu and K. Wu, New J. Chem., 2021, 45, 12362–12366 RSC.
  12. H. Ben Yahia, K. Motohashi, S. Mori, A. Sakuda and A. Hayashi, J. Alloys Compd., 2023, 960, 170600 CrossRef CAS.
  13. F. Tsuji, A. Nasu, C. Hotehama, A. Sakuda, M. Tatsumisago and A. Hayashi, Mater. Adv., 2021, 2, 1676–1682 RSC.
  14. A. Hayashi, K. Noi, A. Sakuda and M. Tatsumisago, Nat. Commun., 2012, 3, 856 CrossRef PubMed.
  15. A. Banerjee, K. H. Park, J. W. Heo, Y. J. Nam, C. K. Moon, S. M. Oh, S.-T. Hong and Y. S. Jung, Angew. Chem., Int. Ed., 2016, 55, 9634–9638 CrossRef CAS PubMed.
  16. Z. Yu, S. Shang, J. Seo, D. Wang, X. Luo, Q. Huang, S. Chen, J. Lu, X. Li, Z. Liu and D. Wang, Adv. Mater., 2017, 29, 1605561 CrossRef PubMed.
  17. Q. Zhu, J. Wang, X. Liu, N. Ebejer, D. Rambabu and A. Vlad, Angew. Chem., Int. Ed., 2020, 59, 16579–16586 CrossRef CAS PubMed.
  18. S. Yubuchi, A. Ito, N. Masuzawa, A. Sakuda, A. Hayashi and M. Tatsumisago, J. Mater. Chem. A, 2020, 8, 1947–1954 RSC.
  19. W. S. Tang, K. Yoshida, A. V. Soloninin, R. V. Skoryunov, O. A. Babanova, A. V. Skripov, M. Dimitrievska, V. Stavila, S. Orimo and T. J. Udovic, ACS Energy Lett., 2016, 1, 659–664 CrossRef CAS.
  20. Y. Sadikin, M. Brighi, P. Schouwink and R. Černý, Adv. Energy Mater., 2015, 5, 1501016 CrossRef.
  21. F. Murgia, M. Brighi and R. Černý, Electrochem. Commun., 2019, 106, 106534 CrossRef CAS.
  22. A. Hayashi, N. Masuzawa, S. Yubuchi, F. Tsuji, C. Hotehama, A. Sakuda and M. Tatsumisago, Nat. Commun., 2019, 10, 5266 CrossRef CAS PubMed.
  23. L. Takacs, J. Therm. Anal. Calorim., 2007, 90, 81–84 CrossRef CAS.
  24. Q. Zhang and F. Saito, Adv. Powder Technol., 2012, 23, 523–531 CrossRef CAS.
  25. M. A. Malagutti, V. Z. C. Paes, J. Geshev and C. E. M. de Campos, RSC Adv., 2022, 12, 33488–33500 RSC.
  26. M. Senna, Crystal, 1985, 20, 209–217 CAS.
  27. A. W. Weeber and H. Bakker, Phys. B, 1988, 153, 93–135 CrossRef CAS.
  28. P. Baláž, M. Baláž, M. Achimovičová, Z. Bujňáková and E. Dutková, J. Mater. Sci., 2017, 52, 11851–11890 CrossRef.
  29. P. Baláẑ, M. Bálintová, Z. Bastl, J. Briančin and V. Šepelák, Solid State Ionics, 1997, 101–103, 45–51 CrossRef.
  30. T. Fukunaga, S. Kajikawa, Y. Hokari and U. Mizutani, J. Non-Cryst. Solids., 1998, 232–234, 465–469 CrossRef CAS.
  31. H. Yamashita, A. Hayashi, H. Morimoto, M. Tatsumisago, T. Minami and Y. Miura, J. Am. Ceram. Soc., 2000, 108, 973–978 CrossRef CAS.
  32. A. Hayashi, S. Hama, H. Morimoto, M. Tatsumisago and T. Minami, J. Am. Ceram. Soc., 2001, 84, 477–479 CrossRef CAS.
  33. K. Iio, A. Hayashi, H. Morimoto, M. Tatsumisago and T. Minami, Chem. Mater., 2002, 14, 2444–2449 CrossRef CAS.
  34. A. Fukushima, A. Hayashi, H. Yamamura and M. Tatsumisago, Solid State Ionics, 2017, 304, 85–89 CrossRef CAS.
  35. H. Ben Yahia, S. Mori, A. Sakuda and A. Hayashi, J. Solid State Chem., 2024, 338, 124891 CrossRef CAS.
  36. V. Petříček, M. Dušek and L. Palatinus, Z. Kristallogr.–Cryst. Mater., 2014, 229, 345–352 CrossRef.
  37. K. P. Devlin, A. J. Glaid, J. A. Brant, J.-H. Zhang, M. N. Srnec, D. J. Clark, Y. Soo Kim, J. I. Jang, K. R. Daley, M. A. Moreau, J. D. Madura and J. A. Aitken, J. Solid State Chem., 2015, 231, 256–266 CrossRef CAS.
  38. C. D. Brunetta, J. A. Brant, K. A. Rosmus, K. M. Henline, E. Karey, J. H. MacNeil and J. A. Aitken, J. Alloys Compd., 2013, 574, 495–503 CrossRef CAS.
  39. J. A. Brant, D. J. Clark, Y. S. Kim, J. I. Jang, A. Weiland and J. A. Aitken, Inorg. Chem., 2015, 54, 2809–2819 CrossRef CAS PubMed.
  40. J. W. Lekse, B. M. Leverett, C. H. Lake and J. A. Aitken, J. Solid State Chem., 2008, 181, 3217–3222 CrossRef CAS.
  41. M. S. Devi and K. Vidyasagar, J. Chem. Soc., Dalton Trans., 2002, 2092–2096 RSC.
  42. J. W. Lekse, M. A. Moreau, K. L. McNerny, J. Yeon, P. S. Halasyamani and J. A. Aitken, Inorg. Chem., 2009, 48, 7516–7518 CrossRef CAS PubMed.
  43. A. le Blanc, M. Danot and J. Rouxel, Bull. Soc. Chim. Fr., 1969, 1, 87–90 Search PubMed.
  44. K. Wu and S. Pan, Crystals, 2017, 7, 107 CrossRef.
  45. J. Allemand and M. Wintenberger, Bull. Soc. Fr. Mineral. Cristallogr, 1970, 93, 14–17 CAS.
  46. L. O. Brockway, Z. Kristallogr., 1934, 89, 434–441 CAS.
  47. J. Llanos, M. Tapia, C. Mujica, J. Oró-Sole and P. Gómez-Romero, Bol. Soc. Chil. Quim., 2000, 45, 605–609 CAS.
  48. W. Schäfer and R. Nitsche, Mater. Res. Bull., 1974, 9, 645–654 CrossRef.
  49. M. Hamdi, A. Lafond, C. Guillot-Deudon, F. Hlel, M. Gargouri and S. Jobic, J. Solid State Chem., 2014, 220, 232–237 CrossRef CAS.
  50. A. V. Chichagov, Eu. G. Osadchii and Z. V. Usyakovskaya, Neues Jahrbuch fuer Mineralogie, Abhandlungen, 1986, 155, 15–22 CAS.
  51. H. Hahn and H. Schulze, Sci. Nat., 1965, 52, 426 Search PubMed.
  52. H. Jiang, P. Dai, Z. Feng, W. Fan and J. Zhan, J. Mater. Chem., 2012, 22, 7502 RSC.
  53. C. L. Teske, Z. Anorg. Allg. Chem., 1976, 419, 67–76 CrossRef CAS.
  54. G. L. Schimek, W. T. Pennington, P. T. Wood and J. W. Kolis, J. Solid State Chem., 1996, 123, 277–284 CrossRef CAS.
  55. Y. Yang, K. Wu, B. Zhang, X. Wu and M.-H. Lee, Chem. Mater., 2020, 32, 1281–1287 CrossRef CAS.
  56. C. L. Teske and O. Vetter, Z. Anorg. Allg. Chem., 1976, 426, 281–287 CrossRef CAS.
  57. Y. Liu, X.-D. Song, R.-C. Zhang, F.-Y. Zhou, J.-W. Zhang, X.-M. Jiang, M. Ji and Y.-L. An, Inorg. Chem., 2019, 58, 15101–15109 CrossRef CAS PubMed.
  58. J. A. Aitken, J. W. Lekse, J.-L. Yao and R. Quinones, J. Solid State Chem., 2009, 182, 141–146 CrossRef CAS.
  59. D. Friedrich, S. Greil, T. Block, L. Heletta, R. Pöttgen and A. Pfitzner, Z. Anorg. Allg. Chem., 2018, 644, 1707–1714 CrossRef CAS.
  60. R. Caye, Y. Laurent, P. Picot, R. Pierrot and C. Lévy, Bull. Soc. Fr. Mineral. Cristallogr, 1968, 91, 383–387 CAS.
  61. Z. Johan and P. Picot, Bull Minéral, 1982, 105, 229–235 CrossRef CAS.
  62. E. M. Heppke, S. Berendts and M. Lerch, Z. Naturforsch. B, 2020, 75, 393–402 CrossRef CAS.
  63. A. Wold and R. Brec, Mater. Res. Bull., 1976, 11, 761–765 CrossRef CAS.
  64. C. R. L. Teske and O. Vetter, Z. Anorg. Allg. Chem., 1976, 427, 200–204 CrossRef CAS.
  65. E. M. Heppke and M. Lerch, Z. Naturforsch. B, 2020, 75, 721–726 CrossRef CAS.
  66. J. He, Y. Guo, W. Huang, X. Zhang, J. Yao, T. Zhai and F. Huang, Inorg. Chem., 2018, 57, 9918–9924 CrossRef CAS PubMed.
  67. E. M. Heppke, T. Bredow and M. Lerch, Z Anorg Allg Chem, 2022, 648, e202200216 CrossRef CAS.
  68. M. S. Devi and K. Vidyasagar, J. Chem. Soc., Dalton Trans., 2002, 2092–2096 RSC.
  69. A. le Blanc and J. Rouxel, C. R. Seances Acad. Sci., Ser. C, 1972, 274, 786–788 CAS.
  70. M.-H. Baiyin, G. Gang and J.-R.-G. Naren, Chin. J. Inorg. Chem., 2014, 30, 405–410 Search PubMed.
  71. C. L. Teske, Z. Anorg. Allg. Chem., 1978, 445, 193–201 CrossRef CAS.
  72. C. L. Teske, H. Terraschke, S. Mangelsen and W. Bensch, Z. Anorg. Allg. Chem., 2020, 646, 1716–1721 CrossRef CAS.
  73. L. Piskach, M. Mozolyuk, A. Fedorchuk, I. Olekseyuk and O. Parasyuk, Chem. Met. Alloys, 2017, 10, 136–141 CrossRef CAS.
  74. R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751–767 CrossRef.
  75. J. Kaur, Sunaina, Z. Zaidi and S. Vaidya, Bull. Mater. Sci., 2020, 43, 298 CrossRef CAS.
  76. X. -a Chen, H. Wada and A. Sato, Mater. Res. Bull., 1999, 34, 239–247 CrossRef.
  77. I. D. Brown and D. Altermatt, Acta Crystallogr., Sect. B, 1985, 41, 244–247 CrossRef.
  78. A. Nasu, M. Otoyama, A. Sakuda, A. Hayashi and M. Tatsumisago, J. Ceram. Soc. Jpn., 2019, 127, 514–517 CrossRef CAS.
  79. J. Chable, C. Baur, J. H. Chang, S. Wenzel, J. M. García-Lastra and T. Vegge, J. Phys. Chem. C, 2020, 124, 2229–2237 CrossRef CAS.
  80. O. Amiel, D. C. Frankel and H. Wada, J. Solid State Chem., 1995, 116, 409–421 CrossRef CAS.

Footnote

Electronic supplementary information (ESI) available: Fig. S1 and EDX mapping images of Na2CaSnS4. See DOI: https://doi.org/10.1039/d4mr00028e

This journal is © The Royal Society of Chemistry 2025
Click here to see how this site uses Cookies. View our privacy policy here.