Dual-functional surface coatings integrating antimicrobial and antibiofouling mechanisms: from material design to application landscapes
Abstract
Surface-mediated pathogen transmission remains a critical vector for infectious disease, especially amidst biofilm-associated infections and rising antimicrobial resistance. This review critically examines the emergence of dual-functional surface coatings that integrate antimicrobial and antibiofouling strategies to provide continuous protection against microbial contamination. This paper investigates how recent innovations leverage physicochemical repulsion, contact-active biocides, controlled-release systems, and stimuli-responsive architectures to tackle both microbial adhesion and survival. This review spans applications across implants, wound dressings, filtration membranes, public touch surfaces, and marine systems, with a comparative lens on efficacy, biocompatibility, and long-term durability. Special attention is given to smart coatings that respond to stimuli (ex: pH, enzymes, and radiation) and nanocellulose-based systems as sustainable, tunable platforms. Despite significant advancements, challenges persist in balancing antimicrobial efficiency, surface stability, and ecological safety. We conclude by identifying key design principles and translational pathways for the development of next-generation multifunctional coatings capable of addressing complex microbial threats across healthcare, public and environmental interfaces.
- This article is part of the themed collection: Recent Review Articles