The rise of ultrashort cationic β-peptides as promising antimicrobial therapeutics

Abstract

Antimicrobial resistance (AMR) is a mounting global health crisis demanding novel, sustainable therapeutic strategies beyond traditional antibiotics. Ultra-short cationic β-peptides have emerged as a promising class of synthetic antimicrobial foldamers with broad-spectrum activity, remarkable proteolytic stability, and low resistance potential. Designed through rational approaches, these 2–10 residue peptides leverage amphipathicity, structural rigidity, and electrostatic interactions to disrupt microbial membranes, biofilms, and even intracellular pathogens. Notably, they exhibit synergistic effects with conventional antibiotics and minimal toxicity to mammalian cells. Emerging in vivo studies in murine models further suggest that ultra-short β-peptides can reduce pathogen burden and improve survival, although the available data remain limited and warrant careful interpretation. This review provides a comprehensive overview of their design, mechanism of action, antimicrobial spectrum, including bacteria, fungi, viruses, and protozoa, and relevance to One Health frameworks. Key translational bottlenecks, including delivery challenges, immunogenicity, pharmacokinetics, and regulatory hurdles, are critically assessed. We also identify major research gaps and propose future directions to fully harness the therapeutic potential of ultra-short β-peptides against multidrug-resistant infections.

Graphical abstract: The rise of ultrashort cationic β-peptides as promising antimicrobial therapeutics

Article information

Article type
Review Article
Submitted
08 Jul 2025
Accepted
10 Sep 2025
First published
11 Sep 2025

RSC Med. Chem., 2025, Advance Article

The rise of ultrashort cationic β-peptides as promising antimicrobial therapeutics

H. A. Kantroo, I. Farooq and Z. Ahmad, RSC Med. Chem., 2025, Advance Article , DOI: 10.1039/D5MD00596E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements