Design and development of sulfenylated 5-aminopyrazoles as inhibitors of acetylcholinesterase and butyrylcholinesterase: exploring the implication for Aβ1–42 aggregation inhibition in Alzheimer's disease

Abstract

Current therapeutic regimens approved to treat Alzheimer's disease (AD) provide symptomatic relief by replenishing the acetylcholine levels in the brain by inhibiting AChE. However, these drugs don't halt or slow down the progression of Alzheimer's disease, which remains a major challenge. Evidence suggests a significant increase in BuChE activity with a decrease in AChE activity as the AD progresses along with the Aβ1–42 aggregation. To address this unmet need, we rationally developed sulfenylated 5-aminopyrazoles (3a–3o) via electro-organic synthesis in good to excellent yields (68–89%) and duly characterized them using spectrophotometric techniques. The compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition, with 3b (4-NO2) showing the highest potency. It exhibited IC50 values of 1.634 ± 0.066 μM against AChE and 0.0285 ± 0.019 μM against BuChE, outperforming donepezil and tacrine. Admittedly, 3b effectively inhibited Aβ1–42 aggregation and enhanced working memory, as indicated by the Y-maze test, besides portraying no cytotoxicity. The outcome was further corroborated using in silico techniques, leading to the elucidation of plausible inhibition and metabolism mechanisms.

Graphical abstract: Design and development of sulfenylated 5-aminopyrazoles as inhibitors of acetylcholinesterase and butyrylcholinesterase: exploring the implication for Aβ1–42 aggregation inhibition in Alzheimer's disease

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Research Article
Submitted
22 Jan 2025
Accepted
16 Mar 2025
First published
17 Apr 2025

RSC Med. Chem., 2025, Advance Article

Design and development of sulfenylated 5-aminopyrazoles as inhibitors of acetylcholinesterase and butyrylcholinesterase: exploring the implication for Aβ1–42 aggregation inhibition in Alzheimer's disease

P. Rani, S. Chahal, A. Ranolia, Kiran, D. Kumar, R. Kataria, P. Kumar, D. Singh, A. Duhan, V. Jha, M. Wahajuddin, G. Joshi and J. Sindhu, RSC Med. Chem., 2025, Advance Article , DOI: 10.1039/D5MD00069F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements