Engineering neuronal networks in granular microgels to innervate bioprinted cancer organoids on-a-chip

Abstract

Organoid models are invaluable for studying organ processes in vitro, offering an unprecedented ability to replicate organ function. Despite recent advancements that have increased their cellular complexity, organoids generally lack key specialized cell types, such as neurons, limiting their ability to fully model organ function and dysfunction. Innervating organoids remains a significant challenge due to the asynchronous biological cues governing neural and organ development. Here, we present a versatile organ-on-a-chip platform designed to innervate organoids across diverse tissue types. Our strategy enables the development of innervated granular hydrogel tissue constructs, followed by the sequential addition of organoids. The microfluidic device features an open tissue chamber, which can be easily manipulated using standard pipetting or advanced bioprinting techniques. Engineered to accommodate microgels of any material larger than 50 μm, the chamber provides flexibility for constructing customizable hydrogel environments. Organoids and other particles can be precisely introduced into the device at any stage using aspiration-assisted bioprinting. To validate this platform, we demonstrate the successful growth of primary mouse superior cervical ganglia (mSCG) neurons and the platform's effectiveness in innervating prostate cancer spheroids and patient-derived renal cell carcinoma organoids. This platform offers a robust and adaptable tool for generating complex innervated organoids, paving the way for more accurate in vitro models of organ development, function, and disease.

Graphical abstract: Engineering neuronal networks in granular microgels to innervate bioprinted cancer organoids on-a-chip

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
07 Feb 2025
Accepted
11 Apr 2025
First published
15 Apr 2025

Lab Chip, 2025, Advance Article

Engineering neuronal networks in granular microgels to innervate bioprinted cancer organoids on-a-chip

J. P. Fredrikson, D. M. Roth, J. A. Cosgrove, G. Sener, L. A. Crow, K. Eckenstein, L. Wu, M. Hosseini, G. Thomas, S. E. Eksi and L. Bertassoni, Lab Chip, 2025, Advance Article , DOI: 10.1039/D5LC00134J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements