Vascular microphysiological systems (MPS): biologically relevant and potent models
Abstract
Extensive research has focused on the vasculature, aiming to understand its structural characteristics, functions, interactions with surrounding tissues, and the mechanisms underlying vascular-related pathologies. However, advancing our understanding of vascular biology requires more complex and physiologically relevant models that integrate physical, chemical, and biological factors. Traditional in vitro dish models cannot replicate three-dimensional (3D) architecture, multi-cell-type interactions, and extracellular environments. In vivo animal models, while more complex, present ethical concerns, high costs, and limited relevance to human physiology. As a result, increasing attention is being directed toward in vitro models, specifically vascular microphysiological systems (MPS) based on organ-on-a-chip (OoC) technologies. This review highlights the relevance and potency of vascular MPS, which leverage microfluidic channels and 3D structures to mimic the physiological environment, incorporate diverse cellular and acellular components, and support complex biological processes. Vascular MPS are already enabling deep investigation into vascular responses to physiological cues, interactions with healthy and pathological tissues, and applications in disease modeling and drug development.