Issue 5, 2025

Green solid-state synthesis of Cu4O3/biochar composites with high antimicrobial activity

Abstract

Infectious diseases caused by pathogenic microorganisms pose severe challenges to human society. In this study, we successfully developed Cu4O3/biochar composites with highly effective antimicrobial properties using an eco-friendly green solid-state synthesis strategy involving ball milling and sintering processes. Our mechanistic investigation revealed that biochar, derived from plant materials, such as corn stover, serves multiple physicochemical roles, including acting as a support carrier, dispersant, and reducing agent. This allowed for precise regulation of the stoichiometric ratio between Cu2O and CuO, which were critical to the successful preparation of pure Cu4O3. The antimicrobial efficacy of the Cu4O3/biochar composite was demonstrated against E. coli, S. aureus, and methicillin-resistant Staphylococcus aureus (MRSA) through minimum inhibitory concentration (MIC) testing, which showed remarkably low MIC values, particularly against the Gram-positive strains S. aureus and MRSA. Further experimental and computational investigations into the antibacterial mechanisms revealed a synergistic effect between the controlled release of Cu(I)/Cu(II) ions and the generation of reactive oxygen species, which enhances the composite's antimicrobial activity. This work is the first report on solid-state symproportionation reaction of CuOx for the preparation of high-purity Cu4O3, stabilized by biochar. This method offers several advantages, including simplicity, low cost, brevity, mild reaction conditions, and environmental friendliness. The Cu4O3/biochar composite shows promise for use as an additive in antibacterial materials to combat harmful microbial infections, including antibiotic-resistant superbugs.

Graphical abstract: Green solid-state synthesis of Cu4O3/biochar composites with high antimicrobial activity

Supplementary files

Article information

Article type
Paper
Submitted
14 Sep 2024
Accepted
19 Dec 2024
First published
24 Dec 2024

Green Chem., 2025,27, 1462-1474

Green solid-state synthesis of Cu4O3/biochar composites with high antimicrobial activity

K. Sun, W. Yang, Y. Shen, Z. Wang, Y. Wang, H. Chen and Y. Liu, Green Chem., 2025, 27, 1462 DOI: 10.1039/D4GC04616A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements