Issue 13, 2025

2′-Fucosyllactose evokes colonization of Alloprevotella and alleviates renal injury in hyperuricemia mice

Abstract

Hyperuricemia (HUA) is a metabolic disease characterized by the overproduction of uric acid (UA) in the blood, with an increasing prevalence of associated renal injury. Intestinal microbiota and its associated metabolites are important mediators in the gut–kidney axis that can induce renal impairment. This study investigated the effect of 2′-fucosyllactose (2′FL) on HUA and its underlying mechanisms. In a hyperuricemic Caenorhabditis elegans model, 2′FL reduced the xanthine-induced UA levels and oxidative stress. In a HUA mice model induced with potassium oxonate and UA, 2′FL intervention (200 mg per kg body weight per d) improved UA metabolism and decreased the serum UA concentration, xanthine oxidase activity, blood urea nitrogen, and creatinine levels. 2′FL also alleviated renal injury, inflammatory response and oxidative stress, as evidenced by the reduced lipopolysaccharide, interleukin-6, and malondialdehyde levels and myeloperoxidase activity and increased interleukin-10 level and total antioxidant capacity. 2′FL enhanced renal UA excretion by upregulating ATP-binding cassette subfamily G member 2 (ABCG2) expression and downregulating urate transporter 1 (URAT1) expression. It inhibited renal ferroptosis by restoring the nuclear factor erythroid 2-related factor 2 (Nrf2)/glutathione peroxidase 4 (GPX4) pathway and alleviated renal injury. In the gut, 2′FL protected the intestinal barrier, increased fecal short-chain fatty acids, and modulated intestinal microbiota composition. In particular, it reversed the HUA-induced changes in the Firmicutes/Bacteroidetes ratio and affected the abundance of certain genera correlated with UA metabolism. These findings suggest that 2′FL is a potential natural agent for HUA treatment with multiple beneficial effects on metabolism, renal function, and gut microbiota.

Graphical abstract: 2′-Fucosyllactose evokes colonization of Alloprevotella and alleviates renal injury in hyperuricemia mice

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
08 Feb 2025
Accepted
25 May 2025
First published
18 Jun 2025

Food Funct., 2025,16, 5586-5600

2′-Fucosyllactose evokes colonization of Alloprevotella and alleviates renal injury in hyperuricemia mice

Y. Lei, S. Sun, L. Chen and Y. Wang, Food Funct., 2025, 16, 5586 DOI: 10.1039/D5FO00580A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements