Curcumin exerts anti-tumor activity in colorectal cancer via gut microbiota-mediated CD8+ T Cell tumor infiltration and ferroptosis

Abstract

Colorectal cancer (CRC), as a high-incidence malignancy, continues to present significant challenges in prevention, screening, and treatment. Curcumin (Cur) exhibits notable anti-inflammatory and anticancer properties. Despite its poor solubility in water and low bioavailability, high concentrations of Cur are detected in the gastrointestinal tract after oral administration, suggesting that it may directly interact with the gut microbiota and exert regulatory effects. This study aims to explore the mechanisms by which Cur improves CRC by modulating gut microbiota. Firstly, we evaluated the effect of Cur on CRC cell viability in vitro using the MTT assay, and the results showed a significant inhibitory effect on CRC cell growth. The IC50 values for Cur in CT26 and RKO cells were 23.52 μM, 16.11 μM, and 13.62 μM at 24, 48, and 72 hours, respectively, and 26.3 μM, 16.52 μM, and 14.22 μM at 24, 48, and 72 hours, respectively. Cur induced apoptosis and caused G2 phase cell cycle arrest in tumor cells. Subsequently, we established a CRC mouse model. Oral administration of Cur at 15 mg kg−1 and 30 mg kg−1 inhibited CRC progression, as evidenced by reduced tumor volume, histological analysis, immunohistochemistry, and an increased number of CD8+ T cells infiltrating the tumors. Ferroptosis in tumor cells was also observed. Cur partially restored the gut microbiota of CRC mice, altering the abundance and diversity of the gut microbiota and affecting serum metabolite distribution, with significant increases in the abundance of SCFA-producing microbes such as Lactobacillus and Kineothrix. To verify causality, we designed a fecal microbiota transplantation (FMT) experiment. Compared with CRC mice, the fecal microbiota from Cur-treated mice significantly alleviated CRC symptoms, including slowed tumor growth, enhanced CD8+ T cell tumor infiltration, and induced ferroptosis in tumor cells. Additionally, when gut microbiota was depleted with antibiotics, Cur's antitumor effects disappeared, suggesting that Cur mitigates CRC in a gut microbiota-dependent manner. These findings provide new insights into the mechanisms underlying CRC and propose novel therapeutic interventions, emphasizing the interaction between gut microbiota and immune responses within the tumor immune microenvironment (TIME).

Graphical abstract: Curcumin exerts anti-tumor activity in colorectal cancer via gut microbiota-mediated CD8+ T Cell tumor infiltration and ferroptosis

Supplementary files

Article information

Article type
Paper
Submitted
21 Aug 2024
Accepted
02 Apr 2025
First published
11 Apr 2025

Food Funct., 2025, Advance Article

Curcumin exerts anti-tumor activity in colorectal cancer via gut microbiota-mediated CD8+ T Cell tumor infiltration and ferroptosis

H. Zhou, Y. Zhuang, Y. Liang, H. Chen, W. Qiu, H. Xu and H. Zhou, Food Funct., 2025, Advance Article , DOI: 10.1039/D4FO04045G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements