Issue 4, 2025

Effects of fructooligosaccharides and Lactobacillus reuteri on the composition and metabolism of gut microbiota in students

Abstract

Fructooligosaccharides (FOSs) and Lactobacillus reuteri have shown great potential in treating gastrointestinal diseases by regulating gut microbiota and metabolites. However, the synergistic effect between these two remains unclear. In this study, an in vitro fermentation model was constructed to investigate the regulatory effects of FOSs and L. reuteri on the gut microbiota of healthy student populations. After 24 hours of fecal fermentation, the results indicated that the experimental group added with FOSs had increased relative abundances of Bifidobacterium and Lactobacillus, while it exhibited lower relative abundances of EscherichiaShigella and Bacteroides. Conversely, the groups added with L. reuteri had higher relative abundances of Bacillus and unclassified_c_Bacilli. The results of microbial metabolism revealed that the addition of FOSs produced a large amount of acetic acid, but reduced the contents of propionic acid, butyric acid, isobutyric acid, and isovaleric acid, along with reducing the production of H2, H2S and NH3. In contrast, the addition of L. reuteri had no significant effect on metabolism. Compared to the single additions, the combination of FOSs and L. reuteri had its advantages and had a more balanced microbial structure and metabolic regulation similar to the addition of FOSs alone. Additionally, correlation analysis revealed a negative correlation between gas production and Bifidobacterium, Lactobacillus, and Bacillus, and a positive correlation with EscherichiaShigella and Bacteroides. Moreover, the formation of acetic acid was positively correlated with Bifidobacterium and negatively correlated with EscherichiaShigella. These findings demonstrated that the combination of FOSs and L. reuteri can effectively synergistically regulate the fecal microbiome of students. This study can provide a theoretical reference for the precise development of functional foods. However, the regulatory mechanisms need further in-depth investigation.

Graphical abstract: Effects of fructooligosaccharides and Lactobacillus reuteri on the composition and metabolism of gut microbiota in students

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
05 Aug 2024
Accepted
29 Dec 2024
First published
17 Jan 2025

Food Funct., 2025,16, 1562-1575

Effects of fructooligosaccharides and Lactobacillus reuteri on the composition and metabolism of gut microbiota in students

X. Xu, H. Fu, H. Quan, Y. Li, Q. Chen, D. Qu and X. Pi, Food Funct., 2025, 16, 1562 DOI: 10.1039/D4FO03763D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements