Issue 2, 2025

Astaxanthin promotes the longevity of Caenorhabditis elegans via modulation of the intracellular redox status and PHA-4-mediated autophagy

Abstract

Astaxanthin is a xanthophyll carotenoid which has been associated with a number of health-promoting effects, including anti-aging; however, the underlying mechanisms are not fully understood. In the present study, it was found that astaxanthin promoted the longevity of wild-type (N2) Caenorhabditis elegans (C. elegans). The lifespan-extending effect of astaxanthin was associated with a significant decrease of lipofuscin accumulation and the reduction of the age-related decline in spontaneous motility. Meanwhile, astaxanthin enhanced the oxidative stress resistance in C. elegans, preventing the elevation of the reactive oxygen species and alleviating juglone-induced toxicity. Further studies revealed that astaxanthin treatment induced the expression of the skn-1 gene; besides, the lifespan-extending effect of astaxanthin relied on SKN-1. Additionally, the expression of age-1, a PI3K homolog gene, and let-363, a target of the rapamycin (TOR) homolog gene, was decreased, while the expression of PHA-4, a transcription factor negatively regulated by TOR signaling, was increased by astaxanthin treatment. PHA-4 has been demonstrated to regulate the expression of genes playing critical roles in the autophagy-lysosome pathway (ALP). Consistently, several key genes related to ALP, including lgg-1, atg-5, vps-34, ncr-1 and asm-1 were upregulated in C. elegans treated with astaxanthin. Knockdown of pha-4 expression by siRNA prevented the elevation of the above ALP-related genes, while diminishing the lifespan-extension effect of astaxanthin. Overall, these results indicated that astaxanthin prolonged the lifespan of C. elegans via modulating the intracellular redox status and promoting PHA-4-mediated autophagy.

Graphical abstract: Astaxanthin promotes the longevity of Caenorhabditis elegans via modulation of the intracellular redox status and PHA-4-mediated autophagy

Supplementary files

Article information

Article type
Paper
Submitted
22 Jul 2024
Accepted
06 Dec 2024
First published
23 Dec 2024

Food Funct., 2025,16, 617-627

Astaxanthin promotes the longevity of Caenorhabditis elegans via modulation of the intracellular redox status and PHA-4-mediated autophagy

F. Ding and Y. Zhao, Food Funct., 2025, 16, 617 DOI: 10.1039/D4FO03490B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements