Advanced carbon-based rear electrodes for low-cost and efficient perovskite solar cells

Abstract

Perovskite solar cells (PSCs) as new-generation photovoltaic cells have received remarkable interest due to the facile fabrication procedures and superb power conversion efficiencies (PCEs). Nevertheless, the widely used noble metal-based rear electrodes such as Ag and Au in PSCs suffer from the relatively high material costs and instability induced by the halide anion degradation reaction, strongly hindering the practical applications of PSCs. Consequently, carbon-based materials are considered as some of the most encouraging candidates to substitute noble metals as rear electrodes due to the cost effectiveness, superior physical/chemical stability, superb structural flexibility and diverse/easily tuned properties to realize low-cost and highly robust PSCs. However, the carbon electrode-based PSCs still suffer from the much inferior PCEs to those of the noble metal-based counterparts due to the insufficient carrier transfer capability and inferior interface contact. In this paper, the recent advancements in the design and fabrication of advanced carbon-based rear electrodes for low-cost and efficient PSCs are reviewed by highlighting the unique merits of carbon-based rear electrodes over metal/metal oxide-based counterparts. Several distinct strategies are also proposed to improve the PCEs and durability of carbon electrode-based PSCs. Lastly, the current challenges and future directions of carbon-based rear electrode-based PSCs are also highlighted and discussed, intending to present vital insights for the future development of low-cost carbon-based PSCs towards the scalable production and widespread applications of this technology.

Graphical abstract: Advanced carbon-based rear electrodes for low-cost and efficient perovskite solar cells

Article information

Article type
Review Article
Submitted
20 Nov 2024
Accepted
27 Jan 2025
First published
30 Jan 2025

Energy Environ. Sci., 2025, Advance Article

Advanced carbon-based rear electrodes for low-cost and efficient perovskite solar cells

J. He, Y. Bai, Z. Luo, R. Ran, W. Zhou, W. Wang and Z. Shao, Energy Environ. Sci., 2025, Advance Article , DOI: 10.1039/D4EE05462H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements