Issue 4, 2025

An ultra-high output self-managed power system based on a multilayer magnetic suspension hybrid nanogenerator for harvesting water wave energy

Abstract

Triboelectric–electromagnetic hybrid nanogenerators (TE-HNGs) are promising for efficient energy harvesting, particularly from high-energy-density water waves. However, existing TE-HNGs often suffer from mechanical combinations and lack comprehensive energy optimization strategies, resulting in a suboptimal overall effect where 1 + 1 ≤ 2. Herein, a highly coupled energy self-managed power system (ESPS) is proposed based on our meticulously designed multilayer magnetic suspension hybrid nanogenerator (MS-HNG) with triboelectric and electromagnetic units. Due to voltage phase coherence between the generators, the magnetic suspension electromagnetic generator (MS-EMG) serves as the gate drive source for metal oxide semiconductor field-effect transistors, enabling the instantaneous release of energy from the magnetic suspension triboelectric nanogenerator (MS-TENG) and thereby maximizing energy output within each cycle. The ESPS achieves a peak power of 261.3 mW, a significant improvement over 75.5 mW from the MS-HNG alone, illustrating a synergistic effect where 1 + 1 > 2. Additionally, the ESPS achieves a current of 45 mA (a 7500% increase) and a power density of 631 W m−3 (a 346% increase). In water wave environments, this system can power 32 bulbs of 3 W each and perform water quality monitoring. This work represents a new breakthrough in the structural and circuit coupling of TE-HNGs, marking a milestone towards commercialization.

Graphical abstract: An ultra-high output self-managed power system based on a multilayer magnetic suspension hybrid nanogenerator for harvesting water wave energy

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
15 Sep 2024
Accepted
05 Dec 2024
First published
14 Jan 2025

Energy Environ. Sci., 2025,18, 1745-1755

An ultra-high output self-managed power system based on a multilayer magnetic suspension hybrid nanogenerator for harvesting water wave energy

Y. Lou, M. Li, A. Yu, Z. L. Wang and J. Zhai, Energy Environ. Sci., 2025, 18, 1745 DOI: 10.1039/D4EE04205K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements