Dual magnetic behavior of an Fe(iii)-dioxolene complex with tri-substituted catechol

Abstract

Magnetically bistable compounds attract considerable attention due to their possible applications in molecular electronics and spintronics devices. Of special interest are spin-crossover (SCO) systems that can interconvert between the low-spin and high-spin states leading to switching of the magnetic properties. Synthesis and comprehensive characterization of a family of ionic ferric-dioxolene complexes [(TPA)Fe(HO-DBCat)]ClO4 (1), [(TPA)Fe(NO2-DBCat)]ClO4 (2) and [(TPA)Fe(MeOCH2-DBCat)]ClO4 (3) (TPA = tris(2-pyridylmethyl)amine; HO-DBCat = dianion of 4,6-di-tert-butyl-1,2,3-trihydroxybenzene, NO2-DBCat = dianion of 4,6-di-tert-butyl-3-nitro-1,2-dihydroxybenzene and MeOCH2-DBCat = dianion of 4,6-di-tert-butyl-3-methoxymethyl-1,2-dihydroxybenzene) are reported. Variable temperature structural, magnetic and spectral analyses revealed that compounds 1–3 undergo a thermally induced SCO in the solid state between the high-spin (S = 5/2) and low-spin (S = 1/2) states. Alternating current magnetic susceptibility measurements indicated that the nitro-substituted complex 2 shows a field supported slow magnetic relaxation in the low-spin state at 5000 Oe. Such duality of magnetic properties makes complex 2 the first ferric compound which demonstrates a complete S = 5/2 → S = 1/2 SCO with a single molecule magnet behavior (SMM, S = 1/2). Electronic structures and magnetic properties of 1, 2 and 3 were investigated with the aid of DFT and SA-CASSCF/NEVPT2 calculations.

Graphical abstract: Dual magnetic behavior of an Fe(iii)-dioxolene complex with tri-substituted catechol

Supplementary files

Article information

Article type
Paper
Submitted
21 Feb 2025
Accepted
26 Mar 2025
First published
31 Mar 2025

Dalton Trans., 2025, Advance Article

Dual magnetic behavior of an Fe(III)-dioxolene complex with tri-substituted catechol

M. G. Chegerev, O. P. Demidov, S. P. Kubrin, P. N. Vasiliev, N. N. Efimov, L. Yue, A. V. Piskunov, M. V. Arsenyev and A. A. Starikova, Dalton Trans., 2025, Advance Article , DOI: 10.1039/D5DT00437C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements