Issue 18, 2025

Exploring the effect of Ru(ii) arene complexes on cytotoxicity upon co-ligand variation and loading on amine-functionalized silica nanoparticles

Abstract

To overcome the undesirable side effects and acquired resistance associated with platinum-based chemotherapeutics, scientists are searching for alternative strategies involving novel metal-based compounds with improved pharmacological properties. Ruthenium complexes have emerged as prospective candidates to combat side effects and improve the selectivity of anticancer agents. In this work, a benzimidazole-based chelating ligand, HL (4-(1H-naphth[2,3-d]imidazol-2-yl)-1,3-benzenediol) with O and N donor atoms, was synthesized and used for complexation with ruthenium to obtain three Ru(II) arene complexes represented by [Ru(η6-p-cym)(L)Cl], [Ru(η6-p-cym)(L)(PPh3)]+ and [Ru(η6-p-cym)(L)(PTA)]+ (where p-cym = p-cymene, PPh3 = triphenylphosphine and PTA = 1,3,5-triaza-7-phosphaadamantane). The synthesized complexes were characterized using spectroscopic techniques. UV-Vis absorption spectroscopy and LC-MS were used to study the stability of the complexes in biological medium. Their lipophilicity was studied by calculating the partition coefficient in n-octanol and water. The complexes showed significant binding with biomolecules like albumin proteins and nucleic acids. All the complexes were found to be cytotoxic, with complex [Ru(η6-p-cym)(L)PPh3]PF6 exhibiting the highest anticancer activity. The mechanism of anticancer activity was attributed to the ability of the complexes to induce apoptosis and generate reactive oxygen species (ROS). The complexes also exhibited antimetastatic properties. Furthermore, complex [Ru(η6-p-cym)(L)PPh3]PF6 was loaded onto amine-functionalized mesoporous silica nanoparticles which led to an increase in its cytotoxic activity.

Graphical abstract: Exploring the effect of Ru(ii) arene complexes on cytotoxicity upon co-ligand variation and loading on amine-functionalized silica nanoparticles

Supplementary files

Article information

Article type
Paper
Submitted
24 Dec 2024
Accepted
28 Mar 2025
First published
31 Mar 2025

Dalton Trans., 2025,54, 7449-7457

Exploring the effect of Ru(II) arene complexes on cytotoxicity upon co-ligand variation and loading on amine-functionalized silica nanoparticles

S. Pal, Pragti, A. Kumar and S. Mukhopadhyay, Dalton Trans., 2025, 54, 7449 DOI: 10.1039/D4DT03536D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements