Open Access Article
This Open Access Article is licensed under a
Creative Commons Attribution 3.0 Unported Licence

Correction: The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations

Thomas Gasevic c, Markus Bursch *ad, Qianli Ma b, Stefan Grimme c, Hans-Joachim Werner *b and Andreas Hansen *c
aMax-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany. E-mail: bursch@kofo.mpg.de
bInstitut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany. E-mail: werner@theochem.uni-stuttgart.de
cMulliken Center for Theoretical Chemistry, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstr. 4, 53115 Bonn, Germany. E-mail: hansen@thch.uni-bonn.de
dFACCTs GmbH, 50677, Koeln, Germany

Received 14th March 2025 , Accepted 14th March 2025

First published on 4th April 2025


Abstract

Correction for ‘The p-block challenge: assessing quantum chemistry methods for inorganic heterocycle dimerizations’ by Thomas Gasevic et al., Phys. Chem. Chem. Phys., 2024, 26, 13884–13908, https://doi.org/10.1039/D3CP06217A.


The root mean square deviations (RMSDs) reported in Table 4 of the original publication are incorrect for revDSD-PBEP86-D3(BJ) and B2NC-PLYP due to faulty inputs in the calculations. The correct values are now provided here in Table 1. Further, PM6-D3H4X was used instead of PM6-D3H4.
Table 1 Root mean square deviations (RMSDs) for all tested methods in kcal mol−1. Except for the FF, SQM, and DFT composite methods, the def2-QZVPP basis set was applied. The values of further statistical descriptors are given in the ESI
Class Method RMSD/kcal mol−1
Covalent Weak donor–acceptor
Plain D3 D4 NL Plain D3 D4 NL
a As the PMx methods are not parameterized for Po, no data for Po-containing systems are included.
FF GFN-FF3 184.3 9.1
UFF4 1416.3 1.0
SQM PM6-D3H4X5,6[thin space (1/6-em)]a 158.8 33.2
PM77[thin space (1/6-em)]a 162.7 17.9
GFN0-xTB 52.0 6.9
GFN1-xTB8 46.7 7.6
GFN2-xTB9 36.8 6.7
Composite B97M-V-C10 12.7 4.1
B97-3c11 9.3 6.8
r2SCAN-3c12 5.7 1.5
PBEh-3c13 10.0 1.8
ωB97X-3c14 8.0 1.1
HF-3c15 33.6 9.0
(meta-)GGA PBE16 16.3 7.3 7.4 8.3 1.0 2.2
BP8617,18 23.3 11.6 8.6 10.9 10.3 7.7
B97M19 8.8 2.2
TPSS20 14.9 7.0 9.6 9.5 3.9 4.7
r2SCAN21–24 8.1 4.3 4.8 4.7 1.0 1.5
M06-L25 12.9 12.7 11.7 1.8 1.7 1.6
MN15-L26 14.4 14.4 3.2 3.2
Hybrid PBE027 7.4 9.1 9.7 9.2 7.2 2.9 3.2 0.6
B3LYP28,29 33.5 8.2 9.6 12.9 4.2 3.9
TPSSh30 11.4 8.7 9.6 9.0 4.8 4.6
r2SCAN031 5.0 5.6 5.1 6.2 4.5 1.3 1.0 1.0
M0632 7.7 6.8 5.8 1.2 1.6 2.2
M06-2X32 6.9 6.7 1.7 2.0
MN1533 12.9 12.9 2.2 2.2
PW6B9534 9.8 5.8 8.0 6.1 3.4 3.6
ωB97X35 8.7 1.1
ωB97M36 4.8 2.1
Double-hybrid revDSD-PBEP86-D3(BJ)1 8.0 3.7
revDSD-PBEP86-D4(2021)2 4.8 2.8 2.4 0.8
PWPB9537 3.8 13.1 3.6 3.4 4.8 1.7
ωB97M(2)38 9.7 3.0
ωB97X-239 7.0 2.1
Pr2SCAN5040 5.0 6.7 1.1 1.0
κPr2SCAN5040 7.2 1.0
ωPr2SCAN5040 7.1 6.9 1.6 0.5
SOS0-PBE0-241,42 7.6 11.2 1.8 1.7
B2NC-PLYP42,43 3.4 4.5 0.8 1.7


In our manuscript, we used the final single point energies of revDSD-PBEP86-D4(2021) and replaced the D4 London dispersion correction with the D3(BJ) correction of the original revDSD-PBEP86-D3(BJ) publication. However, as the density functional itself was also re-parameterized in 2021, this approach is not valid.1,2 The correct parameters for revDSD-PBEP86-D3(BJ) yield slightly larger deviations (RMSDcov = 7.5 vs. 8.0 kcal mol−1).

In the calculations with B2NC-PLYP, Hartree Fock was applied instead of Density Functional Theory (DFT). Using the correct settings significantly reduces the errors for this test set, making B2NC-PLYP a viable choice for the computation of inorganic heterocycle dimerizations (RMSDcov = 3.4 kcal mol−1; RMSDwda = 0.8 kcal mol−1).

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

Notes and references

  1. G. Santra, N. Sylvetsky and J. M. L. Martin, J. Phys. Chem. A, 2019, 123, 5129–5143 CAS.
  2. G. Santra, M. Cho and J. M. Martin, J. Phys. Chem. A, 2021, 125, 4614–4627 CAS.
  3. S. Spicher and S. Grimme, Angew. Chem., Int. Ed., 2020, 59, 15665–15673 CAS.
  4. A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024–10035 CAS.
  5. J. J. P. Stewart, J. Mol. Model., 2007, 13, 1173 CrossRef CAS PubMed.
  6. P. S. Brahmkshatriya, P. Dobeš, J. Fanfrlík, J. Řezáč, K. Paruch, A. Bronowska, M. Lepšík and P. Hobza, Curr. Comput.-Aid. Drug., 2013, 9, 118–129 CrossRef CAS.
  7. J. J. P. Stewart, J. Mol. Model., 2013, 19, 1–32 CrossRef CAS PubMed.
  8. S. Grimme, C. Bannwarth and P. Shushkov, J. Chem. Theory Comput., 2017, 13, 1989–2009 CrossRef CAS.
  9. C. Bannwarth, S. Ehlert and S. Grimme, J. Chem. Theory Comput., 2019, 15, 1652–1671 CrossRef CAS.
  10. J. Witte, J. B. Neaton and M. Head-Gordon, J. Chem. Phys., 2017, 146, 234105 CrossRef PubMed.
  11. J. G. Brandenburg, C. Bannwarth, A. Hansen and S. Grimme, J. Chem. Phys., 2018, 148, 064104 CrossRef.
  12. S. Grimme, A. Hansen, S. Ehlert and J. M. Mewes, J. Chem. Phys., 2021, 154, 064103 CrossRef CAS.
  13. S. Grimme, J. G. Brandenburg, C. Bannwarth and A. Hansen, J. Chem. Phys., 2015, 143, 054107 CrossRef PubMed.
  14. M. Müller, A. Hansen and S. Grimme, J. Chem. Phys., 2023, 158, 14103 CrossRef PubMed.
  15. R. Sure and S. Grimme, J. Comput. Chem., 2013, 34, 1672–1685 CrossRef CAS PubMed.
  16. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865–3868 CrossRef CAS.
  17. A. D. Becke, Phys. Rev. A, 1988, 38, 3098–3100 CrossRef CAS PubMed.
  18. J. P. Perdew, Phys. Rev. B, 1986, 33, 8822–8824 CrossRef PubMed.
  19. N. Mardirossian and M. Head-Gordon, J. Chem. Phys., 2015, 142, 74111 CrossRef PubMed.
  20. J. Tao, J. P. Perdew, V. N. Staroverov and G. E. Scuseria, Phys. Rev. Lett., 2003, 91, 146401 CrossRef PubMed.
  21. J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew and J. Sun, J. Phys. Chem. Lett., 2020, 11, 8208–8215 CrossRef CAS.
  22. J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew and J. Sun, J. Phys. Chem. Lett., 2020, 9248 CrossRef CAS PubMed.
  23. S. Ehlert, U. Huniar, J. Ning, J. W. Furness, J. Sun, A. D. Kaplan, J. P. Perdew and J. G. Brandenburg, J. Chem. Phys., 2021, 154, 061101 CrossRef CAS PubMed.
  24. J. Ning, M. Kothakonda, J. W. Furness, A. D. Kaplan, S. Ehlert, J. G. Brandenburg, J. P. Perdew and J. Sun, Phys. Rev. B, 2022, 106, 075422 CrossRef CAS.
  25. Y. Zhao and D. G. Truhlar, J. Chem. Phys., 2006, 125, 194101 CrossRef.
  26. H. S. Yu, X. He and D. G. Truhlar, J. Chem. Theory Comput., 2016, 12, 1280–1293 CrossRef CAS.
  27. C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158–6170 CrossRef CAS.
  28. Axel D. Becke, J. Chem. Phys., 1993, 98, 5648–5656 CrossRef CAS.
  29. P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627 CrossRef CAS.
  30. V. N. Staroverov, G. E. Scuseria, J. Tao and J. P. Perdew, J. Chem. Phys., 2003, 119, 12129–12137 CrossRef CAS.
  31. M. Bursch, H. Neugebauer, S. Ehlert and S. Grimme, J. Chem. Phys., 2022, 156, 10–12 CrossRef PubMed.
  32. Y. Zhao and D. G. Truhlar, Theory Chem. Acc., 2008, 120, 215–241 CrossRef CAS.
  33. H. S. Yu, X. He, S. L. Li and D. G. Truhlar, Chem. Sci., 2016, 7, 5032–5051 CAS.
  34. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A, 2005, 109, 5656–5667 CAS.
  35. N. Mardirossian and M. Head-Gordon, Phys. Chem. Chem. Phys., 2014, 16, 9904–9924 CAS.
  36. N. Mardirossian and M. Head-Gordon, J. Chem. Phys., 2016, 144, 214110 Search PubMed.
  37. L. Goerigk and S. Grimme, J. Chem. Theory Comput., 2011, 7, 291–309 CAS.
  38. N. Mardirossian and M. Head-Gordon, J. Chem. Phys., 2018, 148, 241736 Search PubMed.
  39. J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2009, 131, 174105 Search PubMed.
  40. L. Wittmann, H. Neugebauer, S. Grimme and M. Bursch, J. Chem. Phys., 2023, 159, 224103 CAS.
  41. M. Alipour, Chem. Phys. Lett., 2017, 684, 423–426 CAS.
  42. N. Mehta, M. Casanova-Páez and L. Goerigk, Phys. Chem. Chem. Phys., 2018, 20, 23175–23194 CAS.
  43. F. Yu, J. Phys. Chem. A, 2014, 118, 3175–3182 CAS.

This journal is © the Owner Societies 2025
Click here to see how this site uses Cookies. View our privacy policy here.