The relationship between Sm alloying and structure sensitivity of ceria(111)- and (100)-oriented nanoislands on Cu(111)†
Abstract
We have investigated the complex dynamics of samarium deposition on ceria islands of different orientations, namely (111) and (100), grown side by side on a Cu(111) single-crystal substrate, followed by post-oxidation and annealing under ultra-high vacuum conditions. Only the (100)-oriented ceria islands undergo substantial initial reduction upon samarium deposition at 740 K via a pathway similar to the strong Ce–ceria interfacial interaction, while the (111)-oriented islands remain in the Ce4+ oxidation state. This remarkable structure sensitivity is explained by the different energies required for oxygen vacancy formation for both oxide orientations. Subsequent mild re-oxidation with O2 results in the complete recovery of the Ce4+ oxidation state in the (100)-oriented islands, indicating the complete healing of oxygen vacancies. In contrast, extended annealing at moderate temperatures likely induces persistent samarium incorporation into the cerium oxide matrix. Our results provide new insights into the complex structure–activity relationships in mixed rare-earth metal oxide systems and have promising implications for optimizing catalytic reactions over such compounds in reducing environments.