Issue 16, 2025

Understanding the hydrocarbon – PFSA ionomer conductivity gap in hydrogen fuel cells

Abstract

Hydrocarbon ionomers (HCs) have the potential to replace perfluorinated sulfonic acids (PFSAs), which are currently used in electrolyser or fuel cell membranes. To be a truly viable alternative, HCs must have conductivity across the operating range and cell lifetime comparable to PFSAs. Conductivity is an important property of membranes because it affects the energy efficiency of a fuel cell or electrolyser. By examining conductivity as a function of water volume fraction, it becomes evident that HC ionomers have consistently lower conductivity at low relative humidity. To better understand this ‘conductivity gap’, conductivity was converted to proton diffusivity and analysed using General Effective Media (GEM) theory for the first time. This analysis revealed that all ionomers require similar hydration levels for proton dissociation, and proton diffusion coefficients in the dry polymer are responsible for the conductivity gap. It is suggested that the membrane tortuosity ultimately accounts for the dry membrane's proton diffusivity and low RH conductivity. As the membrane hydrates however, all ionomers exhibit similar diffusion coefficients, indicating that conductivity at high humidity is limited by proton concentration.

Graphical abstract: Understanding the hydrocarbon – PFSA ionomer conductivity gap in hydrogen fuel cells

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
24 Jan 2025
Accepted
31 Mar 2025
First published
31 Mar 2025

Phys. Chem. Chem. Phys., 2025,27, 8305-8319

Understanding the hydrocarbon – PFSA ionomer conductivity gap in hydrogen fuel cells

W. Bangay, M. Yandrasits and W. Hayes, Phys. Chem. Chem. Phys., 2025, 27, 8305 DOI: 10.1039/D5CP00334B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements