Open Access Article
This Open Access Article is licensed under a Creative Commons Attribution-Non Commercial 3.0 Unported Licence

Müller versus Gutmann–Beckett for assessing the Lewis acidity of boranes

Sameera Ranasinghe , Yijie Li , Madison E. Andrews , Manjur O. Akram , Ragene A. Thornton and Caleb D. Martin *
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA. E-mail: caleb_d_martin@baylor.ed

Received 24th April 2025 , Accepted 2nd June 2025

First published on 6th June 2025


Abstract

A 19F NMR spectroscopic probe, p-fluorobenzonitrile, is used to evaluate the relative Lewis acidity of boranes. The resulting scale is compared with the Gutmann–Beckett method which uses triethylphosphine oxide as a 31P NMR probe and both are compared to computed fluoride affinities.


Boranes are widely used Lewis acids in stoichiometric and catalytic transformations.1–18 The Lewis acid strength is often correlated to reactivity, thus, relative Lewis acidity is valuable information for engineering reactions.19–30 Boranes span diverse electronic and steric environments, dependent on their substitution, that presents challenges in achieving a universal Lewis acidity scale.31,32

Computed fluoride affinities (FAs), hydride affinities (HA), and LUMO energies are simple and effective indicators for analyzing the Lewis acidity of boranes.31,32 Experimental methods are desired to compliment in silico data with common methods assessing the binding of a Lewis base probe to the borane by NMR,33–39 IR,40–44 absorption, or emission spectroscopy.45–49 The Childs’ method measures the 1H NMR chemical shift of the γ-proton of trans-crotonaldehyde upon coordination (Fig. 1).29,34,50 The trans-crotonaldehyde probe is a Michael acceptor that is incompatible with many boranes by reaction, rather than coordination, and Greb recently demonstrated that trans-crotonaldehyde only gives reliable results for the strongest Lewis acids.51 The Gutmann–Beckett method is the most widely adopted, that uses OPEt3 as a probe where the Lewis acidity is assessed by measuring the difference in 31P NMR chemical shift between free OPEt3 and its borane adduct (Δδ31P, Fig. 1).52–56 The Δδ31P value for BoCb3 is 27.5 ppm but for HBMeoCb2 is 30.0 ppm, contrary to the FA values of 605 and 527 kJ mol−1, respectively, as well as observed reactivity (oCb = ortho-carborane, MeoCb = 1-methyl-ortho-carborane).57–59 The discrepancy is attributed to the bulk of the OPEt3 probe indicating the Gutmann–Beckett method can underestimate bulky Lewis acids as they make frustrated Lewis pairs.59,60 Baumgartner and Caputo developed a fluorescence-based method for determining the strength of Lewis acids using a dithienophosphole oxide as a fluorescence probe (Fig. 1).45,61,62 For this method, the probe is not commercially available, accurate fluorescence measurements require high sample purity, the Lewis acid cannot be a competing chromophore and must be stable at high dilutions, and strong Lewis acids require an instrument capable of near IR detection.45,61 Lewis acid reactivity and catalysis is typically done in solution and most synthetic labs have access to NMR spectrometers, making NMR probes practical. From the aforementioned studies, the criteria for a useful experimental NMR spectroscopic Lewis acidity probe are commercial availability, receptivity of the nucleus to NMR spectroscopy, a wide chemical shift range, and a small steric profile.


image file: d5cc02299a-f1.tif
Fig. 1 Spectroscopic probes for the determination of Lewis acidity of boranes.

Recently, Müller and co-workers used 4-fluorobenzonitrile (FBN) as a probe to assess the Lewis acidity of intramolecularly stabilized silylium species by monitoring the change in chemical shift in the 19F NMR spectrum upon coordination (Fig. 2).37,63–66 In their silylium study, the change in 19F NMR chemical shift upon coordination is consistent with the substituent's electronic effects on the Lewis acidity. This is an attractive probe as it is commercially available, the ease of 19F NMR spectroscopy and sensitivity of the nucleus, as well as wide chemical shift range. Inspired by Müller's study, we sought to determine if FBN would be an effective Lewis acidity probe for boranes.


image file: d5cc02299a-f2.tif
Fig. 2 Müller method for assessing the Lewis acidity of intramolecularly stabilized silylium cations using FBN as a 19F NMR probe.

The boranes selected were prominent Lewis acids that are commercially available as well as fluoroaryl and carborane systems as there were inconsistencies between Gutmann–Beckett values and the FAs. In the literature, it has been reported that NMR probe shifts can vary if there is an equilibrium, thus we conducted experiments with 3 equivalents of Lewis acid to favor complete binding of the probe.54,67 The experiments for the Müller method were conducted by preparing a solution with a 1[thin space (1/6-em)]:[thin space (1/6-em)]3 molar ratio of FBN to borane in CDCl3 and the 19F{1H} NMR spectra were recorded at 23 °C using PhCF3 as an internal standard. The Müller method experiments were also conducted in 1[thin space (1/6-em)]:[thin space (1/6-em)]1 molar ratios in CDCl3 and C6D6 and showed identical scales indicating that the trend is not affected from switching from CDCl3 to C6D6 (Fig. S1, ESI). The Δδ19F value is the chemical shift difference between the adduct and free FBN (Δδ19F = δFBN·BR3δFBN). In the literature, the majority of Gutmann–Beckett values are reported in CD2Cl2, however CD2Cl2 has become heavily restricted.68,69 Based on cost and availability, CDCl3 was selected as the solvent for all probe studies.

For the Gutmann–Beckett experiments, a similar procedure was conducted using OPEt3 as the NMR probe and 31P{1H} spectroscopy. Calculations for gas phase fluoride affinities (FAs) were conducted using BPV86/SVP single point calculations. Percent buried volumes (% VBur) were calculated via the SambVca 2.1 tool on the respective fluoride adducts based on the method recently reported by Radius and Finze.31 Some FAs and % VBur had been reported previously which are in Table 1.31,32,57,58,70,71 Müller had reported a Δδ19F for B(C6F5)3 in CD2Cl2 of 10.9,37 very close to the value we obtained in CDCl3 of 10.8 ppm. The CDCl3 values are represented in Table 1 with more detailed results in the ESI. A scale for each of the methods was made based on the experiments and calculations, depicted in Fig. 3.

Table 1 Müller (δ19F FBN = −102.42), Gutmann–Beckett (δ31P OPEt3 = 52.3), fluoride affinities (FA, kJ mol−1), and % buried volumes (% VBur). Chemical shifts in ppm, NR = no reaction

image file: d5cc02299a-u1.tif

BR3 δFBN·BR3 Δδ19F Δδ31P FA % VBur
BBr3 −89.21 13.2 35.9 44370 43.031
BCl3 −90.23 12.1 32.9 40470 40.931
Et2O·BF3 NR 26.1 33871 33.331
PhBBr2 −91.04 11.4 34.5 414 46.1
Ph2BBr −97.52 4.9 29.5 388 49.4
BPh3 NR 4.8 34271 53.131
PhBCl2 −98.25 4.2 31.4 385 44.7
B(OMe)3 NR NR 233 44.2
HB(C6F5)2 −93.04 9.4 28.6 41758 47.032
B(C6F5)3 −91.59 10.8 23.6 44957 58.932
BrBPhoCb2 −88.74 13.7 31.2 524 74.8
BrBMeoCb2 −87.74 14.7 33.9 548 69.4
HBMeoCb2 −90.59 11.8 30.2 52758 64.758
BoCb3 −87.35 15.1 27.6 60557 71.932



image file: d5cc02299a-f3.tif
Fig. 3 (a) The fluoride affinity scale, (b) Gutmann–Beckett scale, and (c) Müller method scale.

Adduct formation for either probe, or thermodynamically favored energies for fluoride binding, was not observed for B(OMe)3. For BPh3, a Δδ31P value of 4.8 ppm and for Et2O·BF3, a value of 26.1 ppm were obtained but no FBN binding. This indicates that all three methods do not give results for weak Lewis acids.

The fluoride affinity scale gave the trend of: BoCb3 > BrBMeoCb2 > HBMeoCb2 > BrBPhoCb2 > B(C6F5)3 > BBr3 > HB(C6F5)2 > PhBBr2 > BCl3 > Ph2BBr > PhBCl2 > BPh3 > Et2O·BF3 > B(OMe)3. The Gutmann–Beckett scale followed the trend: BBr3 > PhBBr2 > BrBMeoCb2 > BCl3 > PhBCl2 > BrBPhoCb2 > HBMeoCb2 > Ph2BBr > HB(C6F5)2 > BoCb3 > Et2O·BF3 > B(C6F5)3 > BPh3. Lastly, the Müller values gave the trend of: BoCb3 > BrBMeoCb2 > BrBPhoCb2 > BBr3 > BCl3 > HBMeoCb2 > PhBBr2 > B(C6F5)3 > HB(C6F5)2 > Ph2BBr > PhBCl2.

In the perfluorophenyl species, the Gutmann–Beckett method has B(C6F5)3 weaker than Piers’ borane (HB(C6F5)2) with both being weaker than BCl3 while the FA values are inverted and match with the substituent's electron withdrawing effects. The Gutmann–Beckett value for BoCb3 is between B(C6F5)3 and Piers’ borane while the FAs indicate that it is the strongest Lewis acid. The bis(carboranyl)boranes (BrBMeoCb2, HBMeoCb2, and BrBPhoCb2) are sequentially lower by FA than BoCb3 while the Gutmann–Beckett values indicate BBr3 is stronger and BCl3 is between BrBMeoCb2 and BrBPhoCb2. The Gutmann–Beckett values are not in very good agreement with FAs for the bulky systems but does order the smaller boranes the same as FAs (BBr3, PhBBr2, BCl3, Ph2BBr, PhBCl2) with the exception of Ph2BBr being switched with PhBCl2 but their FAs only differ by 3 kJ mol−1. In comparing the FA values to the Müller values, there is better agreement between the two scales than the Gutmann–Beckett.

The Pearson correlation coefficient for the Gutmann–Beckett values compared to the FA values is 0.36, indicating moderate correlation between them. The corresponding Pearson correlation coefficient for the Müller values indicates a strong positive correlation to FAs with a coefficient of 0.76. In the FA and Müller scales, the strongest Lewis acid is BoCb3 followed by BrBMeoCb2. For the secondary carboranyl boranes, the FAs indicate BrBMeoCb2 > HBMeoCb2 > BrBPhoCb2 while the Müller values indicate BrBMeoCb2 > BrBPhoCb2 > HBMeoCb2, but the FAs of BrBPhoCb2 and HBMeoCb2 only differ by 3 kJ mol−1 indicating the discrepancy is for close values. The weakest two Lewis acids, Ph2BBr and PhBCl2, are in the same order for FA and the Müller values. Both methods order B(C6F5)3 as stronger than HB(C6F5)2. In the small boranes (BBr3, PhBBr2, BCl3, Ph2BBr, and PhBCl2), the only ordering difference is BCl3 and PhBBr2, but as with the other errors, the FAs differ by only 10 kJ mol−1. In general, the Müller and Gutmann–Beckett scales are in similar agreement with FAs for the smaller boranes, however for the bulkier Lewis acids, the Müller method prevails.

In conclusion, the 19F NMR spectroscopic 4-fluorobenzonitrile probe or Müller method gives a scale that is in good agreement with FAs and the substituents’ electron withdrawing influence on Lewis acidity. This is regardless of bulk on the Lewis acid that is attributed to the minimal steric profile of the linear nitrile group. The Gutmann–Beckett method gave values consistent with FAs for small boranes, but did not have results in agreement with FAs for boranes bearing bulky pentafluorophenyl groups or carborane substituents. Researchers are urged to use the Gutmann–Beckett method with caution for bulky systems. A limitation of the Müller method is that it is not effective for weak Lewis acids, but this is also the case for FAs and to a lesser extent, the Gutmann–Beckett method. The commercial availability, operational simplicity of the 19F NMR spectroscopic probe makes the Müller method attractive to use to assess relative Lewis acidity. Collectively, our results indicate that FBN is an effective probe to evaluate the relative Lewis acidity of boranes, regardless of steric bulk.

S. R., Y. L., M. E. A., and M. O. A. designed and carried out the laboratory experiments under consultation and supervision from C. D. M. R. A. T. performed the DFT calculations. All authors analyzed the results and contributed to the composition of the manuscript.

We are grateful to the Welch Foundation (Grant No. 2203-20240404 an X-AA-0002-20230731) and the National Science Foundation (Award No. 2349851) for their generous support of this work. We thank the reviewers for their valuable suggestions that improved this manuscript.

Data availability

The following files are available free of charge. Experimental details, NMR spectra and the DFT calculations.

Conflicts of interest

There are no conflicts to declare.

References

  1. L. Deloux and M. Srebnik, Chem. Rev., 1993, 93, 763–784 CrossRef CAS .
  2. W. E. Piers and T. Chivers, Chem. Soc. Rev., 1997, 26, 345–354 RSC .
  3. W. Piers, Advances in Organometallic Chemistry, Academic Press Cambridge, MA, USA, 2004 Search PubMed .
  4. G. Erker, Dalton Trans., 2005, 1883–1890 RSC .
  5. D. W. Stephan, Catal. Precious Met., 2010, 261–275 CAS .
  6. D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2010, 49, 46–76 CrossRef CAS PubMed .
  7. R. L. Melen, Chem. Commun., 2014, 50, 1161–1174 RSC .
  8. D. W. Stephan, Acc. Chem. Res., 2015, 48, 306–316 CrossRef CAS PubMed .
  9. D. W. Stephan and G. Erker, Angew. Chem., Int. Ed., 2015, 54, 6400–6441 CrossRef CAS PubMed .
  10. D. W. Stephan, J. Am. Chem. Soc., 2015, 137, 10018–10032 CrossRef CAS PubMed .
  11. M. Hatano and K. Ishihara, Lewis Acids, Boron Reagents in Synthesis, American Chemical Society, 2016, vol. 1236, pp. 27–66 Search PubMed .
  12. J. W. Fyfe and A. J. Watson, Chem, 2017, 3, 31–55 CAS .
  13. J. R. Lawson and R. L. Melen, Inorg. Chem., 2017, 56, 8627–8643 CrossRef CAS PubMed .
  14. B. Rao and R. Kinjo, Chem. – Asian J., 2018, 13, 1279–1292 CrossRef CAS PubMed .
  15. D. Willcox and R. L. Melen, Trends Chem., 2019, 1, 625–626 CrossRef CAS .
  16. J. L. Carden, A. Dasgupta and R. L. Melen, Chem. Soc. Rev., 2020, 49, 1706–1725 RSC .
  17. E. A. Patrick and W. E. Piers, Chem. Commun., 2020, 56, 841–853 RSC .
  18. V. Nori, F. Pesciaioli, A. Sinibaldi, G. Giorgianni and A. Carlone, Catalysts, 2022, 12, 5 CrossRef CAS .
  19. M. A. Beckett, G. C. Strickland, J. R. Holland and K. S. Varma, Polym. J., 1996, 37, 4629–4631 CAS .
  20. D. J. Morrison and W. E. Piers, Org. Lett., 2003, 5, 2857–2860 CrossRef CAS PubMed .
  21. I. B. Sivaev and V. I. Bregadze, Coord. Chem. Rev., 2014, 270–271, 75–88 CrossRef CAS .
  22. G. G. Briand, S. A. Cairns, A. Decken, C. M. Dickie, T. I. Kostelnik and M. P. Shaver, J. Organomet. Chem., 2016, 806, 22–32 CrossRef CAS .
  23. W. Li and T. Werner, Org. Lett., 2017, 19, 2568–2571 CrossRef CAS PubMed .
  24. L. Süsse, M. Vogler, M. Mewald, B. Kemper, E. Irran and M. Oestreich, Angew. Chem., Int. Ed., 2018, 57, 11441–11444 CrossRef PubMed .
  25. G. G. Briand, A. Decken, W. E. M. M. Shannon and E. E. Trevors, Can. J. Chem., 2018, 96, 561–569 CrossRef CAS .
  26. A. Brar, D. K. Unruh, N. Ling and C. Krempner, Org. Lett., 2019, 21, 6305–6309 CrossRef CAS PubMed .
  27. K. A. Andrea and F. M. Kerton, ACS Catal., 2019, 9, 1799–1809 CrossRef CAS .
  28. A. J. Woodside, M. A. Smith, T. M. Herb, B. C. Manor, P. J. Carroll, P. R. Rablen and C. R. Graves, Organometallics, 2019, 38, 1017–1020 CrossRef CAS .
  29. R. J. Mayer, N. Hampel and A. R. Ofial, Chem. – Eur. J., 2021, 27, 4070–4080 CrossRef CAS PubMed .
  30. J. Wang and Q. Ye, Chem. – Eur. J., 2024, 30, e202303695 CrossRef CAS PubMed .
  31. L. Zapf, M. Riethmann, S. A. Föhrenbacher, M. Finze and U. Radius, Chem. Sci., 2023, 14, 2275–2288 RSC .
  32. M. O. Akram, C. D. Martin and J. L. Dutton, Inorg. Chem., 2023, 62, 13495–13504 CrossRef CAS PubMed .
  33. J. F. Deters, P. A. McCusker and R. C. PilgerJr, J. Am. Chem. Soc., 1968, 90, 4583–4585 CrossRef CAS .
  34. R. F. Childs, D. L. Mulholland and A. Nixon, Can. J. Chem., 1982, 60, 801–808 CrossRef CAS .
  35. A. Zheng, S.-B. Liu and F. Deng, Chem. Rev., 2017, 117, 12475–12531 CrossRef CAS PubMed .
  36. J. J. Jennings, B. W. Wigman, B. M. Armstrong and A. K. Franz, J. Org. Chem., 2019, 84, 15845–15853 CrossRef CAS PubMed .
  37. S. Künzler, S. Rathjen, A. Merk, M. Schmidtmann and T. Müller, Chem. – Eur. J., 2019, 25, 15123–15130 CrossRef PubMed .
  38. J. Ramler and C. Lichtenberg, Chem. – Eur. J., 2020, 26, 10250–10258 CrossRef CAS PubMed .
  39. K. K. Samudrala, M. O. Akram, J. L. Dutton, C. D. Martin and M. P. Conley, Inorg. Chem., 2024, 63, 4939–4946 CrossRef CAS PubMed .
  40. M. Lappert, J. Am. Chem. Soc., 1961, 817–822 RSC .
  41. M. Lappert, J. Am. Chem. Soc., 1962, 542–548 RSC .
  42. C. S. Hanson, M. C. Psaltakis, J. J. Cortes, S. S. Siddiqi and J. J. DeveryIII, J. Org. Chem., 2019, 85, 820–832 CrossRef PubMed .
  43. M. Ravi, V. L. Sushkevich and J. A. van Bokhoven, Nat. Mater., 2020, 19, 1047–1056 CrossRef CAS PubMed .
  44. M. A. Kostin, S. A. Pylaeva and P. M. Tolstoy, Phys. Chem. Chem. Phys., 2022, 24, 7121–7133 RSC .
  45. J. R. Gaffen, J. N. Bentley, L. C. Torres, C. Chu, T. Baumgartner and C. B. Caputo, Chem, 2019, 5, 1567–1583 CAS .
  46. S. Fukuzumi and K. Ohkubo, J. Am. Chem. Soc., 2002, 124, 10270–10271 CrossRef CAS PubMed .
  47. C. S. Branch, S. G. Bott and A. R. Barron, J. Organomet. Chem., 2003, 666, 23–34 CrossRef CAS .
  48. K. Ohkubo, S. C. Menon, A. Orita, J. Otera and S. Fukuzumi, J. Org. Chem., 2003, 68, 4720–4726 CrossRef CAS PubMed .
  49. C. Goonesinghe, H.-J. Jung, I. O. Betinol, J. R. Gaffen, C. N. Garrard, J. Chang, K. Hosseini, H. Roshandel, K. Nyamayaro and B. Patrick, ACS Catal., 2023, 13, 16148–16157 CrossRef CAS .
  50. G. C. Welch, L. Cabrera, P. A. Chase, E. Hollink, J. D. Masuda, P. Wei and D. W. Stephan, Dalton Trans., 2007, 3407–3414 RSC .
  51. P. Erdmann, M. Schmitt, L. Janus and L. Greb, Chem. Eur. J., 2025, 31, e202404181 CrossRef CAS PubMed .
  52. U. Mayer, V. Gutmann and W. Gerger, Monatsh. Chem., 1975, 106, 1235–1257 CrossRef CAS .
  53. C. Zhang, J. Wang, W. Su, Z. Lin and Q. Ye, J. Am. Chem. Soc., 2021, 143, 8552–8558 CrossRef CAS PubMed .
  54. P. Erdmann and L. Greb, Angew. Chem., Int. Ed., 2022, 61, e202114550 CrossRef CAS PubMed .
  55. C. Zhang, X. Liu, J. Wang and Q. Ye, Angew. Chem., Int. Ed., 2022, 61, e202205506 CrossRef CAS PubMed .
  56. Y. Wei, J. Wang, W. Yang, Z. Lin and Q. Ye, Chem. – Eur. J., 2023, 29, e202203265 CrossRef CAS PubMed .
  57. M. O. Akram, J. R. Tidwell, J. L. Dutton and C. D. Martin, Angew. Chem., Int. Ed., 2022, 61, e202212073 CrossRef CAS PubMed .
  58. M. O. Akram, J. R. Tidwell, J. L. Dutton and C. D. Martin, Angew. Chem., Int. Ed., 2023, 62, e202307040 CrossRef CAS PubMed .
  59. K. Vashisth, S. Dutta, M. O. Akram and C. D. Martin, Dalton Trans., 2023, 52, 9639–9645 RSC .
  60. L. Xiang, J. Wang, A. Matler and Q. Ye, Chem. Sci., 2024, 15, 17944–17949 RSC .
  61. J. N. Bentley, S. A. Elgadi, J. R. Gaffen, P. Demay-Drouhard, T. Baumgartner and C. B. Caputo, Organometallics, 2020, 39, 3645–3655 CrossRef CAS .
  62. A. E. Laturski, J. R. Gaffen, P. Demay-Drouhard, C. B. Caputo and T. Baumgartner, Precis. Chem., 2023, 1, 49–56 CrossRef CAS PubMed .
  63. A. Schäfer, M. R. Mann, A. Schäfer, W. Saak, D. Haase and T. Müller, Angew. Chem., Int. Ed., 2011, 50, 12636–12638 CrossRef PubMed .
  64. H. Großekappenberg, M. R. Mann, M. Schmidtmann and T. Müller, Organometallics, 2015, 34, 4952–4958 CrossRef .
  65. N. Kordts, S. Künzler, S. Rathjen, T. Sieling, H. Großekappenberg, M. Schmidtmann and T. Müller, Chem. – Eur. J., 2017, 23, 10068–10079 CrossRef CAS PubMed .
  66. S. Künzler, S. Rathjen, K. Rüger, M. S. Würdemann, M. Wernke, P. Tholen, C. Girschik, M. Schmidtmann, Y. Landais and T. Müller, Chem. – Eur. J., 2020, 26, 16441–16449 CrossRef PubMed .
  67. M. Yang, D. Tofan, C.-H. Chen, K. M. Jack and F. P. Gabbaï, Angew. Chem., Int. Ed., 2018, 57, 13868–13872 CrossRef CAS PubMed .
  68. P. M. Schlosser, A. S. Bale, C. F. Gibbons, A. Wilkins and G. S. Cooper, Environ. Health Perspect., 2015, 123, 114–119 CrossRef PubMed .
  69. O. Singh and V. K. Singh, Hazardous Chemicals, Elsevier, 2025, pp. 305–313 Search PubMed .
  70. L. O. Müller, D. Himmel, J. Stauffer, G. Steinfeld, J. Slattery, G. Santiso-Quiñones, V. Brecht and I. Krossing, Angew. Chem., Int. Ed., 2008, 47, 7659–7663 CrossRef PubMed .
  71. I. Krossing and I. Raabe, Chem. – Eur. J., 2004, 10, 5017–5030 CrossRef CAS PubMed .

Footnote

Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d5cc02299a

This journal is © The Royal Society of Chemistry 2025
Click here to see how this site uses Cookies. View our privacy policy here.