Issue 42, 2025

Platinum compounds constructing interface structure strategies for electrolysis hydrogen production

Abstract

With the continuous growth of global energy demand, designing efficient hydrogen evolution reaction (HER) catalysts has become increasingly important. However, current interface structure synthesis strategies for platinum-based compounds are not yet adequate, limiting their application efficiency in hydrogen production. Therefore, this paper reviews a series of interface construction strategies, including the solvothermal method, gas-phase chemical method, heat treatment method, reduction method, electromagnetic synthesis method, electrochemical method, constructing heterojunctions method and constructing substrates method. These methods significantly enhance the overall performance of platinum-based catalysts by optimizing the interactions between the catalyst and support materials, improving electron transfer efficiency, and increasing the exposed area of active sites. Additionally, this paper introduces various interface structure strategies that can increase HER active sites, such as single-atom catalysts, diatomic catalysts, nanoparticles, nanowires, nanotubes, and porous structures. These nanostructures further enhance catalytic activity and stability by increasing the specific surface area and providing abundant reaction sites. Furthermore, this paper thoroughly elucidates the mechanisms of the HER in acidic and alkaline media, exploring the key factors for optimizing catalyst performance under different pH conditions. By understanding the HER mechanisms and combining advanced interface construction strategies with diverse nanostructure designs, researchers can better construct interfaces and design nanostructures, thereby developing platinum-based catalysts that are efficient, stable, and economical. This review provides a systematic guide for constructing interface structures of platinum compounds, aiming to promote the sustainable development of hydrogen energy technologies, facilitate their widespread application in the global energy transition, and contribute to achieving carbon neutrality goals and addressing increasingly severe environmental challenges.

Graphical abstract: Platinum compounds constructing interface structure strategies for electrolysis hydrogen production

Article information

Article type
Highlight
Submitted
28 Feb 2025
Accepted
28 Apr 2025
First published
30 Apr 2025

Chem. Commun., 2025,61, 7543-7562

Platinum compounds constructing interface structure strategies for electrolysis hydrogen production

D. Guo, Q. Pan and Y. Gao, Chem. Commun., 2025, 61, 7543 DOI: 10.1039/D5CC01094B

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements