High-pressure chemistry of functional materials

Abstract

Functional materials, possessing specific properties and performing particular functions beyond their mechanical or structural roles, are the foundation of modern matter science including energy, environment, and quantum sciences. The atomic and electronic structures of these materials can be significantly altered by external stimuli such as pressure. High-pressure techniques have been extensively utilized to deepen our understanding of structure–property relationships of materials, while also enabling emergent or enhanced properties. In this feature article, we review the transformative impact of high pressure on the chemical and physical properties of functional materials, including perovskite materials, low-dimensional metal halides, metal chalcogenides, metal oxides, and inorganic molecular crystals. By analyzing recent advancements and methodological approaches in high-pressure research, we provide insights into the mechanisms driving structural and property changes in these materials. We also emphasize the significance of translating the knowledge gained from high pressure research to the design of new functional materials. Finally, we highlight the potential of high-pressure chemistry and nano-architectonics in advancing functional materials and discuss the future directions and challenges in this field.

Graphical abstract: High-pressure chemistry of functional materials

Article information

Article type
Feature Article
Submitted
05 Nov 2024
Accepted
19 Dec 2024
First published
20 Dec 2024

Chem. Commun., 2025, Advance Article

High-pressure chemistry of functional materials

S. Guo, Y. Zhang, K. Bu, Y. Zhan and X. Lü, Chem. Commun., 2025, Advance Article , DOI: 10.1039/D4CC05905K

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements