Microencapsulation system for scalable differentiation of peripheral motor neurons from human induced pluripotent stem cells

Abstract

Stem cell-derived neural cells hold great potential for treating neurological disorders, but clinical translation is limited by the need for scalable, consistent, and functionally robust production systems. To address these challenges, we developed a microfluidic alginate encapsulation chip (MAEC) system for the high-throughput production of mature peripheral motor neurons from human induced pluripotent stem cells. Alginate was selected for its biocompatibility, low immunogenicity, and calcium-triggered gelation, enabling precise size control. Encapsulation conditions were optimized to produce uniform microcapsules, each containing a single embryoid body of defined size. A refined two-step purification strategy, combining on-chip mineral oil flushing and off-chip medium washing, efficiently removed cytotoxic oleic acid residues and significantly improved post-encapsulation cell viability. Encapsulated cells showed enhanced spontaneous differentiation capacity, and upon exposure to defined patterning cues, upregulated both early and terminal motor neuron markers. Extended cultures, both encapsulated and decapsulated, exhibited characteristic morphological and molecular features of mature motor neurons. Functional maturation was confirmed by whole-cell patch-clamp recordings, revealing repetitive spike firing and large-amplitude action potentials. The MAEC platform provides a scalable and immunoprotective system that supports stable encapsulation for transplantation and capsule-free release for downstream applications, enabling functionally relevant regenerative therapies and high-throughput drug screening and disease modeling.

Graphical abstract: Microencapsulation system for scalable differentiation of peripheral motor neurons from human induced pluripotent stem cells

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
09 Apr 2025
Accepted
19 Jun 2025
First published
10 Jul 2025

Biomater. Sci., 2025, Advance Article

Microencapsulation system for scalable differentiation of peripheral motor neurons from human induced pluripotent stem cells

S. Kim, C. Kim, H. W. Moon, J. Y. Han, S. W. Choi, S. H. Park, H. Kim, B. Choi, J. Y. Kang, J. Kim and J. H. Kim, Biomater. Sci., 2025, Advance Article , DOI: 10.1039/D5BM00535C

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements