BIScreener: enhancing breast cancer ultrasound diagnosis through integrated deep learning with interpretability

Abstract

Breast cancer is the leading cause of death among women worldwide, and early detection through the standardized BI-RADS framework helps physicians assess the risk of malignancy and guide appropriate diagnostic and treatment decisions. In this study, an interpretable deep learning model (BIScreener) was proposed for predicting BI-RADS classifications from breast ultrasound images, aiding in the accurate assessment of breast cancer risk and improving diagnostic efficiency. BIScreener utilizes the stacked generalization of three pretrained convolutional neural networks to analyze ultrasound images obtained from two specific instruments (Mindray R5 and HITACHI) used at local hospitals. BIScreener achieved a classification total accuracy of 90.0% and ROC-AUC value of 0.982 in the external test set for five BI-RADS categories. The proposed method achieved 83.8% classification total accuracy and 0.967 ROC-AUC value for seven BI-RADS categories. In addition, the model improved the diagnostic accuracy of two radiologists by more than 8.1% for five BI-RADS categories and by more than 4.8% for seven BI-RADS categories and reduced the explanation time by more than 19.0%, demonstrating its potential to accelerate and improve the breast cancer diagnosis process.

Graphical abstract: BIScreener: enhancing breast cancer ultrasound diagnosis through integrated deep learning with interpretability

Supplementary files

Article information

Article type
Paper
Submitted
22 Mar 2025
Accepted
12 Jun 2025
First published
16 Jun 2025

Anal. Methods, 2025, Advance Article

BIScreener: enhancing breast cancer ultrasound diagnosis through integrated deep learning with interpretability

Y. Chen, P. Wang, J. Ouyang, M. Tan, L. Nie, Y. Zhang and T. Wang, Anal. Methods, 2025, Advance Article , DOI: 10.1039/D5AY00475F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements