Issue 3, 2025

Fast and effective assessment of 4-chlorophenol as a persistent organic pollutant (POP) using a multi-walled carbon nanotube-modified screen-printed carbon electrode (C/MWCNT-COOH/SPCE)

Abstract

In this study, a rapid, precise, and targeted electroanalytical method was developed for the trace determination of 4-chlorophenol (4-CP). The study reports the use of cyclic voltammetry (CV) to characterize the electrochemical response of 4-CP and the optimization of differential pulse voltammetry (DPV) settings for its sensitive quantification. Screen-printed carbon electrodes (SPCEs) were selected for the sensitive detection of 4-CP using DPV. The incorporation of multi-walled carbon nanotubes functionalized with carboxyl groups (MWCNT-COOH) as a modifier on the working SPCE significantly enhances the electrode's performance, resulting in a 5-fold increase in sensitivity compared to that of the unmodified SPCE. Under optimal conditions, oxidation peak current exhibited a detection limit of 9.2 nM and was proportional to 4-CP concentration in the range of 0.01–1.3 μM. Additionally, the constructed sensor demonstrated high stability, high selectivity, good reproducibility, and excellent feasibility. These findings suggest that the C/MWCNT-COOH/SPE offers a simple, rapid, and cost-effective method for the prospective online assessment of 4-CP in various samples with different matrices.

Graphical abstract: Fast and effective assessment of 4-chlorophenol as a persistent organic pollutant (POP) using a multi-walled carbon nanotube-modified screen-printed carbon electrode (C/MWCNT-COOH/SPCE)

Article information

Article type
Paper
Submitted
19 Oct 2024
Accepted
27 Nov 2024
First published
09 Dec 2024

Anal. Methods, 2025,17, 493-503

Fast and effective assessment of 4-chlorophenol as a persistent organic pollutant (POP) using a multi-walled carbon nanotube-modified screen-printed carbon electrode (C/MWCNT-COOH/SPCE)

A. H. Kamel, A. Alnakkal, H. S. M. Abd-Rabboh and A. Hefnawy, Anal. Methods, 2025, 17, 493 DOI: 10.1039/D4AY01916D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements