Issue 4, 2025

Nitrogen-modified reduced graphene oxide for serum enrichment of N-glycans and MALDI-TOF MS-based identification of HCC biomarkers

Abstract

Protein N-glycosylation, as one of the most crucial post-translational modifications, plays a significant role in various biological processes. The structural alterations of N-glycans are closely associated with the onset and progression of numerous diseases. Therefore, the precise and specific identification of disease-related N-glycans in complex biological samples is invaluable for understanding their involvement in physiological and pathological processes, as well as for discovering clinical diagnostic biomarkers. However, protein N-glycosylation suffers from microscopic heterogeneity and low abundance in biological systems, leading to N-glycopeptide signals being overshadowed by those of their non-glycosylated counterparts during mass spectrometry (MS) analysis. Consequently, there is an urgent demand for the development of novel methods for highly efficient N-glycan enrichment. In this study, we introduced a novel hydrophilic nanomaterial, nitrogen-modified reduced graphene oxide (N-rGO), tailored for this purpose, which was formed by a condensation reaction between the amino groups of rGO and the carboxyl groups of Fmoc-Photo-Linker. Compared to other enrichment materials, N-rGO not only supports efficient N-glycans enrichment via hydrophilic interaction (HILIC), but also serves as an effective matrix for direct MALDI-TOF MS analysis combined with DHB, thereby avoiding sample loss during N-glycans release. 76 and 81 serum N-glycans were obtained from 3 healthy individuals and 3 hepatocellular carcinoma (HCC) patients. Notably, relative quantification of serum N-glycans between 20 patients and 20 healthy controls showed significant expression differences, such as H5N4F1S1, H6N5F1, H5N4S2, H5N4F2S1 and H5N5F1S1, indicating the potential of N-rGO for biomarker discovery.

Graphical abstract: Nitrogen-modified reduced graphene oxide for serum enrichment of N-glycans and MALDI-TOF MS-based identification of HCC biomarkers

Supplementary files

Article information

Article type
Paper
Submitted
12 Oct 2024
Accepted
21 Dec 2024
First published
20 Jan 2025

Analyst, 2025,150, 650-660

Nitrogen-modified reduced graphene oxide for serum enrichment of N-glycans and MALDI-TOF MS-based identification of HCC biomarkers

B. Zhang, S. Yang, X. Chao, L. Qi, W. Qin, H. Bai and X. Wang, Analyst, 2025, 150, 650 DOI: 10.1039/D4AN01324G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements