Issue 4, 2024

2D nanomaterial-based 3D network hydrogels for anti-infection therapy

Abstract

Two-dimensional nanomaterials (2D NMs) refer to nanomaterials that possess a planar topography with a thickness of one or several atomic layers. Due to their large specific surface areas, atomic thickness, rough edges, and electron confinement in two dimensions, they have emerged as promising antimicrobial agents over antibiotics in combating bacterial infections. However, 2D NMs encounter issues such as low bio-safety, easy aggregation, and limited tissue penetration efficiency. To address these concerns, hydrogels with three-dimensional (3D) networks have been developed to encapsulate 2D NMs, aiming to enhance their biocompatibility, biodegradability, and ability to regulate and remodel the tissue microenvironment at the infected site. This review systematically summarizes the current studies on 2D NM-based antibacterial hydrogels with 3D network structures (named 2N3Hs). Firstly, we introduce the emerging types of 2N3Hs and describe their antibacterial actions. Subsequently, we discuss the applications of 2N3Hs in three biomedical fields, including wound dressing, cancer treatment, and bone regeneration. Finally, we conclude the review with current challenges and future developments for 2N3Hs, highlighting their potential as a promising choice for next-generation biomedical devices, particularly in the field of tissue engineering and regenerative medicine. This review aims to provide a comprehensive and panoramic overview of anti-infective 2N3Hs for various biomedical applications.

Graphical abstract: 2D nanomaterial-based 3D network hydrogels for anti-infection therapy

Article information

Article type
Review Article
Submitted
26 Sep 2023
Accepted
17 Dec 2023
First published
19 Dec 2023

J. Mater. Chem. B, 2024,12, 916-951

2D nanomaterial-based 3D network hydrogels for anti-infection therapy

M. Jiang, Y. Zhu, Q. Li, W. Liu, A. Dong and L. Zhang, J. Mater. Chem. B, 2024, 12, 916 DOI: 10.1039/D3TB02244G

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements