Zahra Sabrid,
Farnaz Bahavarniaab,
Mohammad Hasanzadeh*c and
Nasrin Shadjou
d
aNutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
bFood and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
cPharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. E-mail: hasanzadehm@tbzmed.ac.ir
dDepartment of Nanotechnology, Faculty of Chemistry, Urmia University, Urmia, Iran
First published on 5th August 2024
Hyaluronic acid (HA) possesses unique viscoelastic properties and low immunogenicity, making it suitable for various biomedical purposes such as viscosupplementation in osteoarthritis treatment, assistance in eye surgery, and wound regeneration. The need for its quantification in human biofluids is crucial in clinical studies. This research work presents a novel approach using paper-based and parafilm-based photochemical techniques, employing triangular silver nanoprisms (TA-AgNPrs) as optical nanoprobes for HA detection in human biofluids. The interaction between HA and TA-AgNPrs leads to a notable change in the absorption spectrum, facilitating rapid and reliable measurement with a detection limit of less than 0.5 μM to 30 mM. The developed colorimetric setups, along with the single-drop parafilm colorimetric substrate, enable fast and on-site HA analysis. This research marks the maiden use of TA-AgNPrs for direct, rapid and sensitive HA detection in real samples, without the need for sample pre-preparation. The use of a digital image analysis strategy enhances the simplicity, affordability, and portability of this sensor, presenting promising potential for monitoring HA levels. This new technique is poised to enable early diagnosis of diseases associated with abnormal HA levels in human biofluids, thanks to its high sensitivity and selectivity in detecting HA.
Specifically, the large glycosaminoglycan hyaluronan (HA, [D-glucuronic acid] β1–3-[N-acetyl-D-glucosamine] β1–4) undergoes rapid turnover during inflammation and is the primary target of HA in the endothelia of afferent lymphatic vessels and lymph node sinuses.2 Moreover, HA is a common extracellular matrix component found in high concentrations in the skin, joints, and cornea. It consists of thousands of repetitive disaccharide units, resulting in millions of Daltons in the connective tissue of both vertebrates and bacterial capsules.3
Moreover, HA stands out as the sole non-sulfated glycosaminoglycan possessing distinctive physicochemical and biological characteristics.4 This polymer is highly hygroscopic and has the ability to retain water molecules, thereby creating a gel-like environment.5–7 Even in low concentrations within aqueous environments, HA and its hyaluronate salts function as a viscoelastic system.8–11 The human body has five hyaluronidase genes and one hyaluronidase pseudogene. The hyaluronidase genes are located on chromosome 3p21.3 (Hyal1, Hyal2, and Hyal3) and chromosome 7q31.3 (Hyal4, Hyal1 pseudogene, and PH20). The multitude of charged polar groups in HA enables it to retain water molecules and engage in numerous biologically crucial polar interactions. Conversely, the regularly repeating N-acetyl groups promote interactions with hydrophobic regions of cell membranes and membrane proteins, which play a vital role in cell motility.12–14 Broadly, HA is implicated in protective and various physiological processes, encompassing wound and burn healing, tissue regeneration, cell differentiation, morphogenesis, angiogenesis, and inflammation.15–21 Consequently, the recognition and constant monitoring of HA in human body fluids hold significance for clinicians. Traditional techniques for detecting HA concentration generally involve electrophoresis, chromatography techniques, spectrophotometric detection, and electrochemical tests, fluorescence, or mass spectrometric detection.22–25 Despite delivering excellent detection limits, these methods are accompanied by time-consuming sample preparation, the use of expensive and hazardous solvents, and the need for skilled personnel to execute the intricate procedures, emphasizing the importance of exploring the development of more accessible, swift, and cost-effective techniques for detecting HA in body fluids.26
Application of colorimetric-based analytical methods has emerged as an low-cost and effective technology to address previously challenges about sensing of HA. The colorimetric detection of markers utilizing nanoparticles, particularly AgNPs, has gained popularity owing to their heightened sensitivity.27 These nanoparticles possess distinct optical characteristics determined by their dimensions, configuration, and arrangement, rendering them well-suited for detecting a wide range of target molecules such as DNA, microRNA, proteins, and more.28
Using commercially available plates or boxes in a plate reader for colorimetric analysis with nanoparticles may incur high costs, limit portability, and depend on sample volume. Consequently, there is a requirement for an affordable substrate for marker colorimetric analysis. This has prompted the investigation of incorporating nanoparticle-based sensors into paper-based micro-pads to address these issues, as they present cost-effective, swiftly producible, with low sample volume requirements, and portable solutions.29
Recently, there has been a rising inclination towards the utilization of digital technology for analysis.20 This includes obtaining and digital images to speed up the analysis and eliminate the requirement for expensive equipment on the semi-analytical studies. The digital images are obtained through the interaction of radiation with the sample, resulting in absorption and reflection of the radiation. The utilization of colorimetric reactions is especially captivating for digital image-based methods, as when a colored reaction product is exposed to visible light, it reflects radiation. Smartphones can take pictures that can be transformed into color patterns using the red (R), green (G), and blue (B) models, defined by the International Color Consortium (ICC).30 Therefore, any changes in color is characterized on a scale ranging from 0 to 255 (8-bit format) or 0–1 (fractional format). Image processing software, such as Photo Metrix apps, is employed to ascertain the intensity of the measured R, G, and B channels in the captured digital image.31 Consequently, the intensity of color obtained from the pictures corresponds to the level of concentration of the resultant-colored substance formed from the interaction of the analyte and the reagent. Utilizing digital images allows for the substitution of costly analytical methods. Furthermore, digital image-based approaches facilitate decreased utilization of reagents and samples, swift analysis, automation, and portability.32
This study presented a novel and cost-effective colorimetric detection method to monitor HA in real human samples using TA-AgNPrs as an optical probe. The results were evaluated using UV-Vis spectroscopy and a colorimetric approach, incorporating micro-pads to detect low levels of HA in real samples. Furthermore, the research explored HA detection in human real samples using the RGB method (digital images analysis) taken with smartphones. The findings were assessed using colorimetric techniques, employing μPAD for optical monitoring of HA in human biofluids. Scheme 1 illustrates the optical and photochemical detection of HA in real samples.
![]() | ||
Scheme 1 Illustration of the fabrication and detection process of HA using triangular TA-AgNPrs with RGB analyze and μPAD. |
The movement of wax into paper occurs due to capillary forces without the need for external forces or pumps. Presently, the paper-based microfluidic system is gaining attention as an affordable, user-friendly, disposable, and equipment-free technology, with potential to enhance healthcare, disease treatment, and screening particularly in underserved regions. It is recognized that there are disparities in access to medical and health education globally. The sensitivity and selectivity of this method have been confirmed through the testing of HA in the presence of potential interferences. Furthermore, a novel, portable, and cost-effective substrate-based technique has been suggested for analyzing HA in human fluids. To the best of our knowledge, there is no reported uses of TA-AgNPrs-decorated μPADs for HA detection, making it a comparison worth considering.37
The efficiency of papers was assessed using TLC paper, and the findings indicated that glass fiber paper experiences less abrasion due to its superior flow behavior. Paraffin, through its interaction with a chromogen in the detection zone, can be utilized to identify the target, driven by the color produced by the excited product. This approach offers various advantages, including a low melting point, cost-effectiveness, and thermoplasticity. Moreover, paraffin wax, a primary waste product in wax printing, is commonly employed to produce μPAD and demonstrates resistance to most materials utilized in the study.38 Standard μPADs are created through wax printing techniques, resulting in the formation of a micro-zone within the paper model. The advancement of μPAD technology enables the simultaneous analysis of multiple samples, simultaneously.39 The mold is heated to a temperature of 90 °C, and the corresponding piece of paper is placed into it for a duration of 30 seconds. After drying, the iron sample is then heated for two minutes at a temperature of 150 °C. The paper is placed between the magnet and iron mold. Consequently, the paraffin diffused into the paper's composition which led to providing of hydrophilic channels on the surface of paper.
Additionally, in conjunction with the μPAD, parafilm was employed for applying droplets. After being melted at 90 °C, the paper in question was submerged in the substance for 30 seconds, and then heated at 85 °C for 10 seconds after drying. By placing a parafilm sheet between the iron pattern and the magnet, paraffin can permeate the parafilm structure, resulting in the creation of hydrophilic channels on the surface. Once prepared and dried, the μPADs were ready for colorimetric analyses. Parafilm, a thin, semi-transparent sheet, is highly pliable and classified as a thermoplastic polymer. Thermoplastics, essentially, maintain their chemical composition even after they have been melted and cooled, displaying no alteration in their material characteristics. Parafilm is flexible, thermoplastic, and chemically conductive.
The detection of HA was accomplished using a μPAD modified with optical nanoprobes TA-AgNPrs. Therefore, the proposed technique signifies the first stage in the development of HA diagnostic kits that deliver superior qualitative outcomes and undergo rapid, cost-effective color alterations. Paraffin's infiltration into the paper's structure yields a hydrophilic layer on its surface (Scheme S1 and Video – see ESI†).
For further investigation, the zeta potential (Zp) of the optical probe was measured under various conditions, both in the absence and presence of the analyte. Initially, the Zp of TA-AgNPrs (the optical probe) was determined to be −14.6 mV with a conductivity of 13.8 mS cm−1. Upon interaction with HA, the Zp remarkably increased to −0.749 mV, while the conductivity decreased to 1.21 mS cm−1. After a 5 minute incubation period, the Zp further increased to 7.88 mV, and the conductivity reached 0.977 mS cm−1. These results confirm the successful interaction between HA and the optical probe, demonstrating the effectiveness of the proposed method for identifying the target analyte. Notably, the reaction kinetics of HA with TA-AgNPrs are rapid, with the reaction completing within the first minute of mixing the probe with the target molecule. Furthermore, DLS results indicated an average particle size of 68.80 nm for TA-AgNPrs (Fig. S1, ESI†). The prepared TA-AgNPrs solution displayed a brilliant sea blue color with a spectrophotometry absorption peak at 526 nm. Additionally, TA-AgNPrs exhibited UV/vis emission within the 400 to 600 nm range. UV-Vis spectra revealed a maximum absorption for TA-AgNPrs at approximately 526 nm. Upon interaction with HA, the solution's color promptly changed to yellow. As a result, an increase in the concentration of HA triggers the aggregation of numerous TA-AgNPrs particles, leading to a noticeable color change.
Following the initial assessment of the engineered system for HA detection in the solution, μPADs were employed for the portable monitoring of HA on the μ-zone of the substrate. To conduct the colorimetric assay of HA with the μPAD paper, the μ-zone underwent preparation and examination. In the first trial, the μ-zone network was created with 30 seconds of heat and pressure on the fiberglass paper. Subsequently, it took nearly 60 minutes for a drop of TA-AgNPrs and HA to react until they were either absorbed into the paper or dried. Upon injecting AgNPrs and HA, a noticeable color change occurred in the detection zone of the injected areas (Fig. 2A–C). This modification in the preparation of the μPADs rendered it suitable for AgNPrs-based colorimetric systems employing a time/color shift system (Video, ESI†).
![]() | ||
Fig. 2 Photographic images of μPAD for TA-AgNPrs, HA, and TA-AgNPrs/HA (1![]() ![]() |
Based on the results obtained, the established approach successfully detects HA. Therefore, we devised this colorimetric/spectrophotometric sensor method to quantify HA in standard solutions and human biofluids.
Initially, it was observed that the sensing zone experiencing high concentrations of HA (0.03, 0.02, 0.01, and 5 mM) underwent a more rapid color change compared to the other sensing zones (Fig. S2, ESI†). Hence, for the semi-quantitative analysis of HA, the color change over time can serve as an indicator of the analyte. It is worth noting that remarkable results were obtained on paper substrates, while paraffin substrates displayed similar colors to those of paper substrates. The calibration curves of the optical chemosensor were depicted in Fig. S2 and the Video (ESI†), using RGB analysis, with a volume ratio of 1:
1. Linear regression analysis of the collected data resulted in R2 values of 0.8675. As per Lambert's law, the amount of light absorbed by different solution layers remains constant and does not depend on the intensity of the emitted light.
Based on the laws of Beer and Lambert, the relationship between a solution's concentration and the absorption of light is usually linear. Typically, substance concentrations are determined in the range where absorption shows a linear relationship with concentration.38 The experiment provided details the process of carrying out absorbance measurements and analyzing Beer's law using a simple protocol. In this case, a cell phone application called the Photo Metrix analyzer is used as a light detector, capable of determining the average RGB value of images in real time. The light source utilized can be either light reflected from colored construction paper or light from a computer screen. In summary, a chemical analysis of HA is executed with an OD strategy to minimize reagent consumption, specifically of analyte and solvent, in monitoring HA. As a result, a small and portable kit was created for the recognition of specific HA.
The study also examined the presence of hyaluronic acid (HA) in human urine samples using a specially designed optical chemosensor. The urine sample was purposely enriched with varying concentrations of HA (ranging from 5 to 30 mM) in combination with TA-AgNPrs as the optical sensing probe, with a volume ratio of 1:
0.5
:
0.5 v/v/v. Subsequent colorimetric and UV/Vis data were captured and analyzed (Fig. S3, ESI†). Upon visual inspection, it was observed that the color intensity of AgNPrs dissipated following the addition of urine, regardless of the presence of HA. Importantly, UV-Vis assisted opto-analysis also confirmed these findings and indicated minimal shift in the area intensity of absorption peak of TA-AgNPrs/urine in the existence of HA (Fig. S3, ESI†). These outcomes aligned with the UV-visible spectrum observations, reaffirming the results obtained via colorimetric analysis. The absorbance histogram of the opto-sensor in relation to HA/TA-AgNPs, TA-AgNPs/urine, and HA/TA-AgNPs/urine at two different incubation durations (0 and 60 minutes) and the calibration curves are depicted in Fig. S3 (ESI†). Notably, the equation Abs (a.u) = −1.7236CHA + 0.1387 (R2 = 0.8973) was derived within the HA concentration range of 2 to 20 mM, confirming the correlation between wavelength and concentration.
Based on the results obtained, the suggested method has demonstrated the ability to alter HA in human biofluids. Consequently, HA was introduced into human urine and subjected to μPCD analysis. In this regard, various concentrations of HA at a v/v ratio of 1:
1 (5 mM to 20 mM) were employed, and colorimetric analysis was conducted. The RGB analysis indicated an interaction between the urine-HA mixture and TA-AgNPs. However, the absorbance of the opto-sensor did not align with the HA concentration (Fig. S4 and S5, ESI†). As illustrated in Fig. S4,† a linear correlation was observed in the calibration curve of peak versus HA concentration in the human urine sample within the range of 5 to 20 mM and an incubation time of 60 min, yielding an R2 value of the regression equation as 0.9631 (further details available in the ESI Video†). Subsequently, the engineered chemosensor was utilized to detect HA in human serum samples using μPCD. The serum samples were mixed with acetonitrile at a 1
:
1 v/v ratio, subjected to centrifugation for 10 minutes, and then the supernatant was collected and analyzed after the addition of TA-AgNPrs as an optical sensing probe and various concentrations of HA (5 to 100 mM) at a v/v ratio of 1
:
1 (Fig. S4, ESI†). Notably, RGB analysis detected an interaction between diverse concentrations of HA and TA-AgNPrs in the human urine sample. Fig. S5 (ESI†) illustrates the histogram and calibration curve of peak versus HA concentration in the serum sample, covering the range from 5 to 100 mM, recorded over an incubation period of 60 minutes. The calibration curve yielded a regression of Abs (a.u) = −8.066 + 0.133 (R2 = 0.937) (details available in the ESI Video†).
The above information reveals that UV-Vis spectra measurements were conducted for a substance at various concentrations over a 1 hour timeframe, involving high, medium, and low concentrations. Following the initial measurement, the data analysis focused on assessing the standard deviation (SD) values associated with each concentration level and time point. Here's how to interpret the results:
SD for 0.02 M:
• The SD is around 0.034359, indicating moderate variation around the mean wavelength of 447 nm for this concentration.
• 0.002 M: the SD is approximately 0.010275, suggesting low variation around the mean wavelength of 498 nm.
• 0.0005 M: the SD is roughly 0.016307, similar to the 0.002 M concentration, implying low variation around the mean wavelength of 489 nm.
In summary, the SD values offer insights into the consistency and variability of the measurements. Lower SD values signify closely clustered measurements around the mean, reflecting higher precision and reliability. Conversely, higher SD values signal more scattered measurements, indicating greater variability in the data.
Table 1 presents a comparison of the analytical performances of different methods for detecting HA, such as Fluorescence spectroscopy, FRET, surface-enhanced Raman spectroscopy (SERS), ELIZA, and NR, with the recommended approach in this report, which is based on cationic CD.40–45
Method | Nano probe, nano-polymer, biomarker | LOD/LOQ | Linear range | Ref. |
---|---|---|---|---|
Fluorescence spectroscopy | HAPPF@FeSe2 NPs | 1.50 (f) | 1.5–5.2 ppm | 40 |
Fluorescence spectroscopy (FRET) | CSTPP/HA-R nano gels | 1.2 ppm | 2.40 × 10−10 m2 s−1, 1.8 × 10−11 m2 s−1 | 41 |
Surface-enhanced Raman spectroscopy (SERS) | HA-AuNPs | 0.4 mU mL−1 | 10−3 to 10−2 U mL−1 | 42 |
HA-AuNP@SiNP-based fluorometry | HA-AuNPs@SiNPs nano probe | 0.004 U mL−1 | 0.01 to 10 U mL−1 | 43 |
Enzyme-linked immunosorbent assay | PCA3, HAase and HA | 24![]() |
0–240![]() |
44 |
NR, cationic CD-based fluorometry | C-CDs | 50 U mL−1 | 100–80![]() |
45 |
μPAD integrated spectrophotometry | AgNPrs | 0.0005 M | 0.03–0.0005 M | This work |
According to the data from previous reports (Table 1), most commonly described techniques have several limitations, such as low sensitivity, complex mobile phases, and time-consuming extraction procedures with limited adaptability. A comparison of the findings from this study with previously documented methods indicates that the developed approach offers several advantages, including the stability of the optical probe, an appropriate surface area, and practical biological activity. The majority of techniques for identifying HA rely on fluorimetry, with spectrophotometry being infrequently utilized. The unique and innovative aspect of the present study lies in its cost-effectiveness, quick implementation, practicality, and sensitivity. Obtained results are confident that the developed approach can serve as a reliable assay for quantitatively determining HA in real samples. Our study's strength lies in using the colorimetric μPAD for real-time, on-site HA determination in real samples, which is also cost-effective, quick to operate, portable, and provides rapid results.
Footnote |
† Electronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d4ra05396f |
This journal is © The Royal Society of Chemistry 2024 |