Clément
Gommenginger‡
,
Maxime
Hourtoule‡
,
Marco
Menghini
and
Laurence
Miesch
*
Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France. E-mail: lmiesch@unistra.fr
First published on 30th December 2023
We developed a chemoselective metal-free access for the 1,2- and 2,3-semireduction of CF3-N-allenamides. The enamide functionality of CF3-substituted N-allenamides could be efficiently reduced by Et3SiH/BF3·OEt2 in total regioselectivity and good stereoselectivity, whereas DBU promoted the isomerization of the resulting allyl amide leading exclusively to the E-configurated enamide.
Documented examples of either the reduction of tertiary enamides or the isomerization of allylamides are rare. In this regard, spirocyclic oxindoles have been efficiently reduced by a combination of Et3SiH and BF3·OEt2 (Scheme 1B).9 A combination of cobalt and photoredox catalysis was used to promote an isomerization by a hydrogen atom transfer to produce polysubstituted enamides (Scheme 1C).10
We anticipated that the enamide moiety would be reduced by using a mixture of a hydride source with a Lewis acid similar to systems used with simple enamides.9,13 Gratifyingly, as shown in Table 1, when CF3-N-allenamide 1 was exposed to a mixture of Et3SiH and BF3·OEt2, N-allyl amide 2 was exclusively obtained as a E/Z mixture (85:
15) with 90% yield (Table 1, entry 1). Next, diverse Lewis acids were investigated (Table 1, entries 2–6).
Entrya | Acid (equiv.) | Time (h) | Ratio E/Zb | Yieldc (%) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Reaction conditions: to a solution of 1 (0.15 mmol) in CH2Cl2 (1.5 mL), were added Et3SiH (0.75 mmol) and the acid at 0 °C and then the mixture was stirred at 23 °C. b E/Z ratio was determined by 1H-NMR-spectroscopy. c Isolated yields. d Only degradation of starting material was observed. e The starting material was fully recovered. f Hantzsch ester (5 equiv.) was used instead of Et3SiH, and the reaction mixture was stirred at 40 °C. g 1.2 equiv. of Et3SiH was used instead of 5 equiv. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | BF3·OEt2 (5) | 1 | 85![]() ![]() |
90 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | FeCl3 (0.2) | 1 | —d | —d | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | InCl3 (0.2) | 6 | 75![]() ![]() |
89 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | TMSOTf (5) | 1 | 60![]() ![]() |
34 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | AgOTf (0.2) | 4 | 27![]() ![]() |
75 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | AgNTf2 (0.2) | 2 | 86![]() ![]() |
78 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | Tf2O (5) | 1 | 46![]() ![]() |
51 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | AcOH (5) | 4 | —e | —e | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9f | BF3·OEt2 (5) | 4 | —d | —d | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10g | BF3·OEt2 (1.2) | 1 | 82![]() ![]() |
45 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | BF3·OEt2 (0.5) | 4 | 82![]() ![]() |
98 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
12 | — | 18 | —e | —e |
Whereas FeCl3 only led to degradation of the starting material, InCl3, TMSOTf, AgNTf2 provided the desired 1,2-semireduction of the CF3-N-allenamide 1, although with lower selectivities except for AgNTf2 (Table 1, entry 6). Notably, the selectivity was inverted by employing AgOTf as Lewis acid (Table 1, entry 5). Even though the desired compound was obtained with triflic anhydride (Tf2O), there was almost no selectivity in this case (Table 1, entry 7). Unfortunately, with AcOH instead of BF3·OEt2 the starting material was fully recovered (Table 1, entry 8). Replacing Et3SiH by Hantzsch ester or lowering the amount of Et3SiH was not effective (Table 1, entries 9 and 10). There was no significant erosion in selectivity when the loading of Lewis acid was lowered to 0.5 mol%, and a good yield (98%) was obtained in this case (Table 1, entry 11). Without any Lewis acid the reduction did not take place (Table 1, entry 12).
Using the determined optimal conditions, the scope of the reaction was examined (Table 2). Aryls (2a–d), hetero-aryls (2m), alkyls (2e), cycloalkyls (2f–g), as well as functionalized side-chains (2h–l) were accommodated in this transformation. The disubstituted N-allenamide 2n underwent the 1,2-semireduction with 71% yield. Not only tosyl derivatives but also mesyl (2o), nosyl (2q), cyclopropyl (2p), thienyl (2r), as well as cyclic sulfonamides (2s–t) participated in this reduction. In this study, carbamates could not be investigated because we failed to obtain the corresponding CF3-substituted N-allenamides.
Next, we wondered whether it would be possible to deprotonate the α-position of the nitrogen of the N-allyl-amide 2. When the latter was treated with t-BuOK, enamide 3 was obtained, albeit with a moderate yield (Table 3, entry 1). The formation of an exclusive E-configured tertiary enamide 3 resulted formally in a 2,3-semireduction of CF3-N-allenamide 1. Whereas cesium carbonate was ineffective (Table 3, entry 2) for this reaction, tertiary ammonium salts showed acceptable yields of the target compound 3 (Table 3, entries 3–6). Although triethylamine (Et3N) and tetramethyguanidine (TMG) were unproductive (Table 3, entries 7 and 8), 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) was well-suited for this transformation and provided the best yield for the formation of enamide 3 (Table 3, entry 9). Lowering the amount of DBU caused a decrease in the yield of the target compound (Table 3, entry 10).
Entrya | Base (equiv.) | Yieldb (%) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a Reaction conditions: to a solution of 2 (0.10 mmol) in THF (1.0 mL), the base was added, and then the mixture was stirred at 23 °C for 18 h. b Isolated yields. c The starting material was fully recovered. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
1 | t-BuOK (5) | 30 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
2 | Cs2CO3 (5) | —c | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
3 | TBAF (1M THF) (5) | 48 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
4 | TBAF (1M THF) (1.3) | 57 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
5 | Triton B (40% wt. CH3OH) (5) | 12 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
6 | Triton B (40% wt. H2O) (1.3) | 66 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
7 | Et3N (5) | —c | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
8 | TMG (1.3) | —c | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
9 | DBU (1.3) | 89 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
10 | DBU (50 mol%) | 78 |
We then focused on the generality of this formal 2,3-semireduction. Various benzylamine derivatives were examined to react with DBU. As shown in Scheme 2, neutral (3a), different functional groups on the benzyl ring were tolerated (3b–d). Good yields were obtained as well with the disubstituted compound 3n. X-Ray analyses of 3b confirmed the structure of the E-configured enamide 3b obtained (CCDC 2301994† contains the supplementary crystallographic data for the structure).14 Linear alkyls (3e), cyclic alkyls (3f–g), as well as fluorinated side-chains (3h) on the nitrogen atom were compatible with this transformation. Moreover, the reaction proceeded smoothly in the presence of functionalized side-chains including unsaturated (3i–j), nitrile (3k), halogen (3l), disulfonamide (3u), pyridine (3m), as well as tetralone (3v) substituents. Enamides (3u, 3v) were directly obtained in a sequential two step procedure from the corresponding N-allenamides because of the instability of allylamides 2u and 2v. Good yields were also obtained through modification of the electron-withdrawing group on the nitrogen atom (3o–r). Even the hindered cyclic sulfonamides exhibited good reactivity with the current protocol (3s–t).
To gain further insights into the reaction mechanism, we subjected E- and Z-configured allyl-amides 2t-E and 2t-Z to DBU. E-Enamide 3t was the sole product formed in 83% and 75% yield, resepectively from the two isomeric starting materials (Scheme 3A), establishing that both stereoisomers 2t-E and 2t-Z react and form the same compound 3t. Moreover, when terminal N-allenamide 4 was treated with Et3SiH and BF3·OEt2, the totally reduced amide 5 was isolated in 42% yield, confirming that with unsubstituted N-allenamides 4, a 1,4-addition of hydride takes place first, followed by reduction of the enamide formed (Scheme 3B).11 Based on literature and on the experimental results, we propose the following mechanism (Scheme 3C). Activation of the CF3-N-allenamide with BF3·OEt2 results in the formation of conjugated iminium ion A. Hydride addition occurs exclusively on the iminium ion, affording allylamides 2.13 No addition on the trifluoromethylated alkene has been observed. Accordingly, addition of Et3SiH to CF3-N-allenamide 1 (Table 1, entry 12) did not promote the addition of hydride on the trifluoromethyl-substituted alkene moiety. Deprotonation of 2 by DBU and subsequent delocalization of the carbanion α to the CF3 moiety produces B. Protonation of the latter finally forms the thermodynamically more stable E-configured tertiary enamide 3.
Unfortunately, when we tried to deprotect the nosyl group in 2q, deprotection and isomerization took place simultaneously leading to an unstable enamine. We then carried out some additional transformations with allyl-amides as depicted in Scheme 4. Reductive ozonolysis of 2f took place forming alcohol 6, key building blocks for the construction of heterocyclic compounds in drug design.15 Additionally, the requisite functionalized allyl-amide 2i was transformed into unsaturated tosylsulfonamide 7 with good yields (Scheme 4).
Footnotes |
† Electronic supplementary information (ESI) available. CCDC 2301994. For ESI and crystallographic data in CIF or other electronic format see DOI: https://doi.org/10.1039/d3ob01859h |
‡ These authors contributed equally. |
This journal is © The Royal Society of Chemistry 2024 |