Crosslinking-induced anion transport control for enhancing linearity in organic synaptic devices†
Abstract
Numerous studies on neuromorphic computing systems and their associated synaptic devices have been reported for the efficient processing of complex data. Among them, organic electrochemical transistors (OECTs) have attracted considerable attention owing to their advantages such as low cost, high scalability, and facile electrical modulation. However, the requirement of supplementary processing for ionic transport control to actualize or enhance synaptic attributes necessitates a compromise between their inherent benefits. Here, we developed a simple method, photoinduced crosslinking, which can control the structure of conjugated polymers in OECTs to improve ionic transport control. Crosslinked polymers increase the ion doping efficiency and allow sequential anion movements, which leads to high linearity in OECTs. The fabricated device also exhibited enhanced synaptic properties such as a long retention time, wide dynamic range, and high recognition accuracy. This innovative approach opens up new possibilities for the construction of next-generation artificial synapses.