Issue 24, 2024

A nanobody-based microfluidic chip for fast and automated purification of protein complexes

Abstract

Many proteins, especially eukaryotic proteins, membrane proteins and protein complexes, are challenging to study because they are difficult to purify in their native state without disrupting the interactions with their partners. Hence, our lab developed a novel purification technique employing Nanobodies® (Nbs). This technique, called nanobody exchange chromatography (NANEX), utilises an immobilised low-affinity Nb to capture the target protein, which is subsequently eluted – along with its interaction partners – by introducing a high-affinity Nb. In line with the growing trend towards studying proteins in smaller sample sizes, the present study validates miniaturisation of NANEX in a packed bed microfluidic (μNANEX) chip. This μNANEX setup integrates up to five submicroliter silicon chips, enabling fully automated and reproducible purifications within minutes. Additionally, a digital twin model of the μNANEX column, which accurately predicts the effect of the reaction kinetics and mass transfer on the elution peaks, has been validated over a broad range of experimental conditions. The effectiveness of the method is demonstrated with Nbs binding to the green fluorescent protein (GFP), allowing streamlined purification of any GFP fusion protein from biological samples. Specifically, we used μNANEX to purify 0.1–1 μg of GFP-fused yeast proteins from 20 μL crude lysate and identified their interaction partners via mass spectrometry, showing that μNANEX purification preserves protein complexes.

Graphical abstract: A nanobody-based microfluidic chip for fast and automated purification of protein complexes

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
03 Sep 2024
Accepted
19 Nov 2024
First published
26 Nov 2024

Lab Chip, 2024,24, 5421-5432

A nanobody-based microfluidic chip for fast and automated purification of protein complexes

P. De Keyser, M. de Waard, I. S. M. Jimidar, S. Verloy, S. Janvier, V. Kalichuk, T. Zögg, A. Wohlkönig, E. Pardon, J. Steyaert and G. Desmet, Lab Chip, 2024, 24, 5421 DOI: 10.1039/D4LC00728J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements