Issue 39, 2024

Modulation of the magnetic properties of mononuclear Dy(iii) complexes by tuning the coordination geometry and local symmetry

Abstract

Precise control of the crystal field and local symmetry around the paramagnetic spin center is crucial for the design and synthesis of single-molecule magnets (SMMs). Herein, three mononuclear Dy(III)-based complexes, [Dy(LN6)(CH3COO)2](BPh4)(CH2Cl2) (1), [Dy(LN6)(2,6-Cl-4-NO2-PhO)(H2O)2]2(PF6)2(H2O)(2,6-Cl-4-NO2-PhO)2 (2) and [Dy(LN6)(2,6-Cl-4-NO2-PhO)2](BPh4)(CH2Cl2)2 (3) (LN6 = N6-hexagonal plane accomplished by a neutral Schiff base ligand formed from 2,6-diacetylpyridine and ethylenediamine), are successfully isolated. In these complexes, the Dy(III) centers are coordinated with six neutral N atoms from a nonrigid equatorial ligand, while different oxygen-bearing ligands are arranged at the axial positions of the central ions by gradual regularization of the axial ligands. As a result, Dy(III) ions in the three complexes exhibit various coordination geometries, forming a ten-coordinate tetradecahedron for 1, a nine-coordinate muffin configuration for 2 and a distorted eight-coordinate hexagonal bipyramid for 3. Magnetic studies reveal that all complexes exhibit no SIM behaviour under zero dc field, due to the predominant quantum tunneling of magnetization (QTM), which can be effectively suppressed by additional dc fields. Experiments, coupled with theoretical calculations, demonstrate that varying local symmetries and coordination geometries are synergistically responsible for the disparities of QTM and uniaxial anisotropy, resulting in notably different magnetic properties.

Graphical abstract: Modulation of the magnetic properties of mononuclear Dy(iii) complexes by tuning the coordination geometry and local symmetry

Supplementary files

Article information

Article type
Paper
Submitted
24 Jul 2024
Accepted
11 Sep 2024
First published
12 Sep 2024

Dalton Trans., 2024,53, 16219-16228

Modulation of the magnetic properties of mononuclear Dy(III) complexes by tuning the coordination geometry and local symmetry

X. Zhou, H. Qin, Z. Zeng, S. Luo, T. Yang, P. Cen and X. Liu, Dalton Trans., 2024, 53, 16219 DOI: 10.1039/D4DT02135E

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements