Continuous-flow synthesis of CsPbI3/TiO2 nanocomposites with enhanced water and thermal stability†
Abstract
The inherent poor stability of CsPbI3 nanocrystals hinders the practical application of this material. Therefore, it is still a challenge to improve the stability of CsPbI3 nanocrystals and realize their large-scale continuous preparation. In this work, we report the preparation of CsPbI3/TiO2 nanocomposites with high stability by a microfluidic method. After the combination of CsPbI3 nanorods with TiO2, the PL intensity increased by 1.3 times under excitation at 577 nm due to the passivating effect of TiO2 on the surface of CsPbI3 nanorods and its carrier transport characteristics. Meanwhile, due to the coating of TiO2, the surface exposure area of CsPbI3 nanorods is reduced, which blocks external environmental effects to some extent and effectively improves the stability of CsPbI3 nanorods. Finally, an LED with a color gamut of 142% NTSC and a color temperature (CCT) of 3952 K was obtained by combining CsPbI1.5Br1.5/TiO2 and CsPbBr3/TiO2 nanocomposites with a blue light chip (455 nm). This study shows that the continuous and controllable synthesis of all inorganic halide perovskite nanocrystals by a microfluidic method is of great significance in the fabrication of high-performance optoelectronic materials and display devices.