Issue 21, 2024

Solvents regulate the packing porosity of a bilayer metal–organic cage

Abstract

Metal–organic cages (MOCs) are an emerging class of porous materials with promising applications. However, controlling the configuration of the cage packing, which can influence the overall porosity of the materials, remains a difficulty, as many factors can influence the cage assembly and stacking. Herein, we report a solvent strategy to fine-tune the packing configuration of a bilayer MOC, a small triangular prism cage (six Cu ions act as vertices, three nitrate ions act as pillars, and six nitrate ions act as caps) incorporated into a large triangular prism cage (another six Cu ions act as vertices, a couple of oxygen atoms act as pillars and six ligands (L1: 3,5-bis(pyridine-3-yl)-4H-1,2,4-triazole) act as a jointed cap) by the coordination between the triazole nitrogen from L1 and the inner vertex Cu ions. The involved solvents water, acetonitrile (MeCN) and N,N′-dimethylformamide (DMF) form hydrogen bonds with this bilayer MOC, resulting in three different types of packing associated with systemically tuned porosity (NTU-93: 12.2%, NTU-94: 19.3%, and NTU-95: 42.1%). Gas adsorption and breakthrough tests demonstrate that NTU-95 has potential ability for C2H2/C2H4 separation. This work not only shows a case of finely tuned packing of coordination cages, but also provides a powerful tool that may be extended to other cage families.

Graphical abstract: Solvents regulate the packing porosity of a bilayer metal–organic cage

Supplementary files

Article information

Article type
Paper
Submitted
09 Apr 2024
Accepted
03 May 2024
First published
06 May 2024

Dalton Trans., 2024,53, 9106-9111

Solvents regulate the packing porosity of a bilayer metal–organic cage

T. Pan, Y. Wu, Y. Duan and J. Duan, Dalton Trans., 2024, 53, 9106 DOI: 10.1039/D4DT01040J

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements