Issue 24, 2024

IBzH (IBenzhydryl): sterically-flexible N-aliphatic N-heterocyclic carbenes (NHCs) for iron-catalyzed C(sp3)–C(sp2) cross-coupling of unactivated haloalkanes

Abstract

Iron-catalyzed cross-coupling has emerged as a pivotal concept for the synthesis of valuable products across various facets of chemical research, including pharmaceuticals, organic materials and biological probes. In this respect, the use of N-heterocyclic carbenes (NHCs) as ancillary ligands to iron has been particularly effective. However, the major limitation is that the successful iron-catalytic systems have been almost exclusively limited to N-aryl-N-heterocyclic carbenes, which significantly restricts future developments of this commanding catalysis platform. Herein, we report IBzH (IBenzhydryl), a class of N-heterocyclic carbenes that are based on benzhydryl substitution of the imidazole ring. We demonstrate that this N-alkyl yet sterically-flexible ligand class promote the challenging C(sp3)–C(sp2) iron-catalyzed cross-coupling of unactivated haloalkanes, superseding the performance of other NHC ligands. Alkyl–alkyl cross-coupling is also described. Large scale synthesis and the evaluation of steric and electronic properties is presented. Considering the major advantages of sterically-flexible N-heterocyclic carbenes, we anticipate that this class of N-alkyl NHC ligands will have broad application.

Graphical abstract: IBzH (IBenzhydryl): sterically-flexible N-aliphatic N-heterocyclic carbenes (NHCs) for iron-catalyzed C(sp3)–C(sp2) cross-coupling of unactivated haloalkanes

Supplementary files

Article information

Article type
Communication
Submitted
30 Oct 2024
Accepted
12 Nov 2024
First published
12 Nov 2024

Catal. Sci. Technol., 2024,14, 7002-7008

IBzH (IBenzhydryl): sterically-flexible N-aliphatic N-heterocyclic carbenes (NHCs) for iron-catalyzed C(sp3)–C(sp2) cross-coupling of unactivated haloalkanes

M. Kardela, B. Dziuk, R. Szostak, M. Szostak and E. Bisz, Catal. Sci. Technol., 2024, 14, 7002 DOI: 10.1039/D4CY01315H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements